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Abstract
Fully homomorphic encryption (FHE) and zero-knowledge
proofs (ZKPs) are emerging as solutions for data security in
distributed environments. However, the widespread adop-
tion of these encryption techniques is hindered by their sig-
nificant computational overhead, primarily resulting from
core cryptographic operations that involve large integer
arithmetic. This paper presents a formalization of multi-word
modular arithmetic (MoMA), which breaks down large bit-
width integer arithmetic into operations on machine words.
We further develop a rewrite system that implements MoMA
through recursive rewriting of data types, designed for com-
patibility with compiler infrastructures and code generators.
We evaluate MoMA by generating cryptographic kernels,
including basic linear algebra subprogram (BLAS) operations
and the number theoretic transform (NTT), targeting various
GPUs. Our MoMA-based BLAS operations outperform state-
of-the-art multi-precision libraries by orders of magnitude,
and MoMA-based NTTs achieve near-ASIC performance on
commodity GPUs.

CCS Concepts: • Theory of computation→ Rewrite sys-
tems; • Security and privacy→ Cryptography; • Com-
puting methodologies → Parallel computing method-
ologies.

Keywords: Multi-word modular arithmetic, code generation,
rewrite system, BLAS, number theoretic transform, cryptog-
raphy
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Figure 1. Performance of 256-bit NTT on GPUs and ASIC
(lower is better). On NVIDIA GeForce RTX 4090, MoMA-
based NTT outperforms state-of-the-art cryptographic accel-
eration library [29] running on NVIDIA H100 by an average
of 14 times and achieves near-ASIC [63] performance.

1 Introduction
As data security becomes increasingly critical in distributed
and cloud computing environments, advanced encryption
schemes such as fully homomorphic encryption (FHE) and
zero-knowledge proofs (ZKPs) are emerging as promising
solutions for privacy preservation. However, these encryp-
tion techniques remain impractical for widespread use due
to their computational overhead, much of which originates
from core cryptographic operations involving large integer
arithmetic. These operations are typically performed on large
finite fields, where integer bit-width ranges from 256 to 768
bits for ZKP applications and from hundreds to over 1,000
bits for FHE-based systems.
To manage this computational cost, current ZKP imple-

mentations often rely on arbitrary-precision libraries such as
the GNU Multiple Precision (GMP) library [22] or program-
ming languages such as Rust and Python, which support
large integer arithmetic natively. However, while these ex-
ternal libraries offer fundamental support for large integer
operations, they come with limitations. For instance, many
ZKP libraries are written in languages like Python that are
not performance-oriented, or are constrained to CPU execu-
tion due to factors such as GMP’s lack of support for GPUs.
As integer bit-widths in popular FHE schemes extend to
thousands of bits, the residue number system (RNS) is used
to represent these large numbers via much smaller integers
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(residues) that fit within machine words, typically 32 or 64
bits. However, using RNS with small residues introduces
additional computational overhead for modulus raising and
reduction [12] and requires frequent bootstrapping, which
is a highly computationally intensive process in FHE [2].
To address these challenges, we formally define multi-

word modular arithmetic (MoMA), in which large integers
are represented as multiple machine words to exploit the
native performance of single-word arithmetic. While sim-
ilar ideas have been explored in the past, such as Intel’s
work in the 1980s [24], to the best of our knowledge, our
work provides a novel formalization of multi-word modu-
lar arithmetic that systematically decomposes large integer
arithmetic into machine word operations. This formalization
directly enables many optimizations in symbolic space, in-
cluding reducing redundant operations for inputs with non-
power-of-two bit-widths as opposed to simply zero-padding
the inputs. Moreover, we introduce a program transforma-
tion pass that implements MoMA as a set of rewrite rules in
a term rewriting system. This pass, integrable with compiler
frameworks and code generators, operates on data types and
recursively transforms computations involving large data
types into equivalent sequences of operations on smaller
data types, continuing until all data types used in the kernel
are natively supported by the machine.

In this paper, we focus on targeting GPUs due to their mas-
sive parallelism and high on-chip performance. We imple-
ment MoMA in SPIRAL [20], a code generator that produces
highly efficient implementations for various hardware archi-
tectures and provides strong support for implementing math-
ematically formal rule systems. To evaluate our approach,
we first implement several basic linear algebra subprograms
(BLAS) operations on finite fields, which correspond to poly-
nomial arithmetic operations that are fundamental to many
advanced cryptographic schemes [1]. Next, we implement a
more complex kernel, the number theoretic transform (NTT),
which is a critical component in FHE and ZKPs. NTTs ac-
count for over 90% of the runtime in many FHE schemes
and approximately 30% in ZKP applications [19, 60]. Our
MoMA-based implementation of BLAS operations outper-
forms state-of-the-art multi-precision libraries by orders of
magnitude. Additionally, ourMoMA-basedNTT implementa-
tion achieves near-ASIC performance on a commodity GPU,
as shown in Figure 1, while maintaining the flexibility to
support multiple input bit-widths across various NTT sizes.
By utilizing MoMA, we offer a more performant alterna-

tive to ZKP libraries that rely on GMP, Python or Rust for
large integer arithmetic. In the context of FHE, transition-
ing from 64-bit to 128-bit (and higher bit-width) residues in
the RNS representation using MoMA creates opportunities
to reduce the frequency of costly operations, such as boot-
strapping. In some FHE schemes, MoMA could potentially
eliminate the need for RNS entirely if the original bit-width
is in the hundreds and the cost of using MoMA to decompose

the integer is less than the cost of employing RNS. Histori-
cally, extending integer bit-width beyond the machine word
width has been viewed as highly expensive in the field of
cryptography. MoMA’s ability to reduce the computational
cost of large integer arithmetic could potentially enable in-
novative cryptographic algorithms that are not constrained
by the limitations of 64-bit word width.
Contributions. This paper makes the following contri-

butions:
1. A formal definition of multi-word modular arithmetic

(MoMA) that decomposes integer arithmetic on large
bit-widths into native machine word operations.

2. A rewrite system that implements MoMA, compatible
with compiler frameworks and code generators, that
recursively rewrites computations of large data types
into an equivalent sequence of operations that use
smaller data types.

3. A demonstration ofMoMA-based BLAS operations out-
performing state-of-the-art multi-precision libraries,
and MoMA-based NTTs achieving near-ASIC perfor-
mance on commodity GPUs. By making large integer
arithmetic efficient, our work may enable critical in-
novations in cryptographic algorithms.

2 Background
In this section, we begin by outlining the mathematical back-
ground of modular and multi-digit arithmetic. Next, we in-
troduce polynomial operations built on modular arithmetic,
which represent the primary computational bottlenecks in
cryptographic applications like FHE and ZKPs.

2.1 Modular Arithmetic
When operating on an integer ring modulo 𝑞, Z𝑞 , additions,
subtractions, and multiplications of two integers are defined
as

𝑐 = 𝑎 + 𝑏 mod 𝑞,

𝑐 = 𝑎 − 𝑏 mod 𝑞,

𝑐 = 𝑎𝑏 mod 𝑞,

(1)

where 𝑎, 𝑏, 𝑐 ∈ Z𝑞 . However, modulo operation is signifi-
cantly more costly than basic operations such as addition
and multiplication on standard off-the-shelf hardware. To
efficiently implement modular arithmetic, we aim to replace
the modulo operations with cheaper operations instead. Us-
ing the definition that 0 ≤ 𝑎 < 𝑞 and 0 ≤ 𝑏 < 𝑞 for any
𝑎, 𝑏 ∈ Z𝑞 , modular addition within the ring can be done by

𝑐 =

{
𝑎 + 𝑏 − 𝑞, if (𝑎 + 𝑏) > 𝑞,

𝑎 + 𝑏, otherwise.
(2)

Modular subtraction can be done by

𝑐 =

{
𝑎 − 𝑏 + 𝑞, if 𝑎 < 𝑏,

𝑎 − 𝑏, otherwise.
(3)
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For modular multiplication, we use Barrett reduction [4],
a popular approach widely used within the cryptography
community [1, 7], for general modulo (that is, not a specific
modulus such as Goldilock prime [26]). Modular multipli-
cation using Barrett reduction with the floor operation is
defined as

𝑐 = 𝑎𝑏 − ⌊𝑎𝑏/𝑞⌋𝑞. (4)
Note that the result is exact. We discuss how to efficiently
implement Equation 4 in Section 3.1.

2.2 Multi-digit Arithmetic
Multi-digit arithmetic involves the execution of basic mathe-
matical operations (i.e., addition, subtraction, multiplication,
and division) on numbers with multiple digits. Formally, we
define a function []𝑧 : Z𝑛 → Z, parameterized by base digit
𝑧, as

[𝑥0, 𝑥1, . . . , 𝑥𝑛−1]𝑧 = 𝑥0𝑧
𝑛−1 + 𝑥1𝑧

𝑛−2 + . . . + 𝑥𝑛−1 = 𝑥 . (5)

For example, in the decimal system where 𝑧 = 10, we can
write [8, 9]10 = 8 · 10 + 9 = 89. We can calculate 𝑛, given 𝑧

and 𝑥 , as 𝑛 = ⌈log𝑧 𝑥⌉. It is important to note that, at this
stage, we are discussing the mathematical concepts without
any reference to implementation. This means that the value
of 𝑧 does not necessarily need to fit within a machine word
and can be arbitrarily large or small. In Section 3, we will
discuss how to efficiently implement multi-digit arithmetic,
and how to combine it with modular arithmetic, when each
digit is a machine word.
Here, we demonstrate multi-digit arithmetic on 2 digits.

Let 𝑎 = [𝑎0, 𝑎1]𝑧 = 𝑎0𝑧 + 𝑎1 and 𝑏 = [𝑏0, 𝑏1]𝑧 = 𝑏0𝑧 + 𝑏1. The
schoolbook multi-digit addition, 𝑐 = 𝑎 + 𝑏, can be written as

[𝛿, 𝑐2]𝑧 = 𝑎1 + 𝑏1,
[𝑐0, 𝑐1]𝑧 = 𝑎0 + 𝑏0 + 𝛿,

(6)

where 𝑐 = [𝑐0, 𝑐1, 𝑐2]𝑧 and 𝛿 ∈ {0, 1}.
The schoolbook multi-digit subtraction, 𝑐 = 𝑎 − 𝑏, can be

written as
𝑐1 = 𝑎1 − 𝑏1,

𝛿 =

{
1, if 𝑎1 < 𝑏1,

0, otherwise,
𝑐0 = 𝑎0 − 𝑏0 − 𝛿,

(7)

where 𝑐 = [𝑐0, 𝑐1]𝑧 .
The schoolbook multiplication, 𝑐 = 𝑎𝑏, can be written as

𝑐 = (𝑎0𝑏0)𝑧2 + (𝑎0𝑏1 + 𝑎1𝑏0)𝑧 + 𝑎1𝑏1, (8)

where each addition can be further broken down using the
aforementioned multi-digit addition. The Karatsuba algo-
rithm [31] is a divide-and-conquer method for multiplying
large numbers by recursively breaking down the multipli-
cation of two 𝑛-digit numbers into three multiplications of
𝑛/2-digit numbers, along with some additions and subtrac-
tions. Formally,

𝑐 = (𝑎0𝑏0)𝑧2 +
(
(𝑎0 +𝑎1) (𝑏0 +𝑏1) −𝑎0𝑏0 −𝑎1𝑏1

)
𝑧 +𝑎1𝑏1, (9)

where each addition and subtraction can be further broken
down using the aforementioned multi-digit addition and
subtraction. In 𝑛-digit arithmetic, the addition of two 𝑛-digit
integers produces a result with at most 𝑛 + 1 digits, while
subtraction yields a result with at most 𝑛 digits, and multi-
plication can produce up to 2𝑛 digits.

2.3 Polynomial Operations and NTT
Polynomial operations and NTT are fundamental crypto-
graphic kernels in advanced encryption schemes such as
FHE and ZKPs. In this section, we provide a brief overview
of these concepts.

Polynomial addition and subtraction. Polynomial op-
erations, especially polynomial multiplications with coeffi-
cients reside in Z𝑞 , are the building blocks of advanced cryp-
tographic schemes such as FHE and ZKPs [5, 47]. Let 𝑓 and
𝑔 denote two polynomials of degree 𝑛, where 𝑓 =

∑𝑛
𝑖=0 𝑎𝑖𝑥

𝑖

and 𝑔 =
∑𝑛

𝑗=0 𝑏 𝑗𝑥
𝑗 . The addition and subtraction of 𝑓 and

𝑔 are defined as the point-wise addition and subtraction of
both polynomials’ coefficients (𝑎𝑖 and 𝑏 𝑗 ), respectively. Prior
work [1] has shown that point-wise multiplication of both
polynomials’ coefficients is also commonly utilized in FHE
schemes. Each of the above three operations can be effi-
ciently implemented using vector operations, where a vector
of length 𝑛 + 1 represents the coefficients of the degree 𝑛
polynomial.
We can then utilize the BLAS abstraction [6] to describe

point-wise polynomial operations. Vector addition and sub-
traction can be interpreted as variants of a BLAS Level 1
operation known as axpy, which is formally defined as

𝑦 = 𝑎𝑥 + 𝑦, (10)

where 𝑥 and 𝑦 are vectors and 𝑎 is a scalar. Point-wise vector
multiplication can be seen as a special case of gemv, a BLAS
Level 2 operation that computes a general matrix-vector
multiplication.

Polynomial multiplication. The multiplication of 𝑓 and
𝑔 is defined as

𝑓 (𝑥)𝑔(𝑥) =
2𝑛∑︁
𝑗=0

𝑗∑︁
𝑖=0

𝑎𝑖𝑏 𝑗−𝑖𝑥
𝑗 , (11)

which is an 𝑂 (𝑛2) operation. Similarly to how the Fourier
transform converts a signal from the time domain to the
frequency domain, NTT transforms a polynomial from its
coefficient form (e.g., 𝑓 (𝑥) = 𝑥3 + 5𝑥2 + 2𝑥 + 1 mod 3) to its
evaluation form (e.g., {𝑓 (0), 𝑓 (1), 𝑓 (2), 𝑓 (3), 𝑓 (4)}), thereby
reducing the time complexity of polynomial multiplication
from 𝑂 (𝑛2) to 𝑂 (𝑛 log𝑛). Formally, an 𝑛-point NTT is de-
fined as

𝑦 (𝑘) =
𝑛−1∑︁
𝑗=0

𝑥 ( 𝑗)𝜔 𝑗𝑘
𝑛 mod 𝑝, 0 ≤ 𝑘 ≤ 𝑛 − 1, (12)
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where 𝜔𝑛 is the 𝑛-th primitive root of unity. As advanced
encryption schemes heavily rely on polynomial arithmetic
that comes with a prohibited computational overhead, NTT
has been widely adopted to accelerate polynomial multiplica-
tions. Prior work has shown that NTT accounts for over 90%
of FHE-based application execution time in practice [19] and
around 30% of execution time for ZKP-based workloads [60].
Therefore, we focus on the previously mentioned BLAS op-
erations and NTT as our primary cryptographic kernels, as
they encompass a majority of practical cryptographic work-
loads [1].

3 Multi-word Modular Arithmetic
We define a machine word as the largest integer data type
that is efficiently supported by the instruction set or hard-
ware. Typically, a machine word is the largest data type that
can fit into a single general-purpose register. For example,
on x86-64 architectures, a machine word has 64 bits. To fully
leverage the computing efficiency of natively supported ma-
chine words, we propose using these words to construct
large integer arithmetic when the integer bit-width exceeds
the native machine word width. We combine multi-digit
arithmetic with modular arithmetic, treating each machine
word as a digit, to develop a system called multi-word mod-
ular arithmetic (MoMA). Using our multi-digit definition
from Equation 5, in MoMA, we now express an integer 𝑥 as
follows:

𝑥 = [𝑥0, 𝑥1, . . . , 𝑥𝑘−1]2𝜔0 , (13)

where 𝑘 = ⌈log2𝜔0 𝑥⌉ and 𝜔0 is the machine word width. For
simplicity, we denote this as

𝑥 = [𝑥𝜔0
0 , 𝑥

𝜔0
1 , . . . , 𝑥

𝜔0
𝑘−1], (14)

where each 𝑥
𝜔0
𝑖
, for 0 ≤ 𝑖 < 𝑘 , is an integer of bit-width

𝜔0. This notation is used to build the formal rule system in
Section 4.

As we map from multi-digit arithmetic to its implementa-
tion using machine words, we move from the mathematical
level to the algorithm level where overflow must be explic-
itly managed when intermediate results exceed the machine
wordwidth. Addressing these challenges is the primary focus
of MoMA and will be thoroughly discussed in this section.
We begin with single-word modular arithmetic, where the in-
put integer 𝑥 fits within a single machine word. As discussed
in Section 2.2, we have to handle results from addition and
multiplication that exceed the machine word width. Next,
we discuss double-word modular arithmetic, which builds
upon single-word modular arithmetic. Double-word modu-
lar arithmetic is fundamental to MoMA, as it allows us to
represent an arbitrarily large input integer as a double-word
type (with an abstract machine word whose bit-width is half
of the input bit-width) and decompose it into single-word op-
erations. MoMA applies this decomposition recursively until

1 #define MBITS 60
2 typedef uint64_t i64;
3 typedef unsigned __int128 i128;
4

5 // addition
6 void _sadd(i128 *c, i64 a, i64 b) {
7 *c = (i128) a + (i128) b; }
8

9 // modular addition
10 void _saddmod(i64 *c, i64 a, i64 b, i64 q) {
11 i128 t; t = (i128) a + (i128) b;
12 *c = t > q ? (i64) (t - (i128) q) : (i64) t; }
13

14 // subtraction
15 void _ssub(i64 *c, i64 a, i64 b) { *c = a - b; }
16

17 // modular subtraction
18 void _ssubmod(i64 *c, i64 a, i64 b, i64 q) {
19 i64 t; t = a - b; *c = a < b ? t + q : t; }
20

21 // multiplication
22 void _smul(i128 *c, i64 a, i64 b) {
23 *c = (i128) a * (i128) b; }
24

25 // modular multiplication using Barrett reduction
26 void _smulmod(i64 *c, i64 a, i64 b, i64 q, i64 mu) {
27 i128 t, r; t = (i128) a * (i128) b; r = t;
28 r >>= (MBITS - 2); r *= (i128) mu;
29 r >>= (MBITS + 5); t -= (i128) r * (i128) q;
30 // correct off-by-one approx. error
31 *c = t > q ? (i64) (t - (i128) q) : (i64) t; }

Listing 1. Single-word modular arithmetic.

the abstract machine word is reduced to an actual machine
word that can be executed natively.

3.1 Single-Word Modular Arithmetic
We begin with single-word arithmetic, where all inputs fit

entirely within a machine word. When the single-word data
type matches the machine word, the single-word arithmetic
is usually fully supported by the compiler, allowing us to
directly implement the mathematical definitions from Sec-
tion 2.1. Note that to fully support single-word arithmetic,
the compiler must also provide a double-word representa-
tion. This is necessary to store results from single-word
operations, even though full double-word arithmetic (which
requires quad-word representation) is typically unavailable.
For example, in C and CUDA, operations on uint64_t are
fully supported, as the 128-bit unsigned __int128 type ex-
ists for overflow handling. Utilizing the compiler-supported
double-word data type allows compilers (e.g., nvcc) to lever-
age specialized instructions such as add-with-carry for carry
propagation during compilation. In Listing 1, we illustrate
both modular and non-modular arithmetic, using uint64_t
in C as the single-word data type.

Single-word addition, subtraction, and multiplication are
natively supported by the compiler. For modular addition
and modular multiplication, we need to cast the input using
a double-word datatype because the results might exceed the
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bit-width of a single word. For modular addition, we imple-
ment the arithmetic according to Equation 2 and for modular
subtraction, it is a direct translation from Equation 3. We
show how to implement efficient modular multiplication
using Barrett reduction according to Equation 4. Note that
to implement what is shown in Equation 4 efficiently, we
need to carefully choose the implementation of ⌊𝑎𝑏/𝑞⌋. The
straightforward approach is to use integer division, which
truncates the results toward zero in C. However, division is
computationally expensive and can be vulnerable to timing
attacks if it is not implemented as a constant-time opera-
tion on certain architectures. As a result, the cryptography
community has developed methods to implement ⌊𝑎𝑏/𝑞⌋
using only multiplication and bit shifts, which are signif-
icantly more efficient than division. This approach relies
on a precomputed value, 𝜇, derived as follows. We want to
approximate 1/𝑞 in ⌊𝑎𝑏/𝑞⌋ by

1/𝑞 = 𝜇/2𝑘 , (15)

so that we can compute ⌊𝑎𝑏/𝑞⌋ with ⌊𝑎𝑏𝜇/2𝑘⌋ using the
right shifts. Therefore, we precompute 𝜇 using

𝜇 = ⌊2𝑘/𝑞⌋, (16)

so that 𝜇 is an integer. Now,

𝜇/2𝑘 = ⌊2𝑘/𝑞⌋/2𝑘 ≤ 1/𝑞. (17)

We need to correct this off-by-one error using a conditional
subtraction that corresponds to the last line of code in List-
ing 1. The entire Barrett reduction now becomes

𝑎𝑏 − ⌊𝑎𝑏 ⌊2𝑘/𝑞⌋/2𝑘⌋𝑞. (18)

We only need multiplications and shifts to compute Equa-
tion 4 rather than using divisions if we precompute ⌊2𝑘/𝑞⌋
as 𝜇 using division for once for the same modulus 𝑞.

3.2 Double-Word Modular Arithmetic
We define double-word integers as integers with a bit-

width of 2𝜔 , where 𝜔 denotes the bit-width of a single word.
While single-word modular arithmetic is relatively straight-
forward, as illustrated in Listing 1, double-word arithmetic is
significantly more complex. This complexity arises because
adding or multiplying two double-word integers can lead to
quad-word (integers with a bit-width of 4𝜔) results, which
further complicates arithmetic operations. We will start with
double-word modular addition and subtraction.

Addition and subtraction. Listing 2 shows the C imple-
mentation of double-word modular addition and subtraction.
As a quad-word cannot be natively represented, we break it
down to four single words 𝑎 = [𝑎640 , 𝑎641 , 𝑎642 , 𝑎643 ] as defined
in Equation 14. In the implementation of _dadd, carry extrac-
tion and propagation must be handled explicitly in the code,
as this cannot be managed automatically by the compiler.
Similarly, _dsub requires explicit management of the bor-
row. For the modulo operation, the only missing part is the

1 // addition: quad = double + double
2 void _dadd(i64 *c0, i64 *c1, i64 *c2, i64 *c3,
3 i64 a0, i64 a1, i64 b0, i64 b1) {
4 i128 s; int cr; s = (i128) a1 + (i128) b1;
5 *c3 = (i64) s; cr = s >> 64;
6 s = (i128) a0 + (i128) b0 + (i128) cr;
7 *c2 = (i64) s; *c1 = s >> 64; *c0 = 0; }
8

9 // subtraction
10 void _dsub(i64 *c0, i64 *c1, i64 a0, i64 a1,
11 i64 b0, i64 b1) {
12 int br; *c1 = a1 - b1; br = a1 < b1;
13 *c0 = a0 - b0 - br; }
14

15 // less than
16 void _dlt(int *c, i64 a0, i64 a1, i64 b0, i64 b1) {
17 int i0, i1, i2, i3; i0 = (a0 < b0);
18 i1 = (a0 == b0); i2 = (a1 < b1);
19 i3 = i1 && i2; *c = i0 || i3; }
20

21 // modular addition
22 void _daddmod(i64 *c0, i64 *c1, i64 a0, i64 a1,
23 i64 b0, i64 b1, i64 q0, i64 q1) {
24 i64 t0, t1, t2, t3, t4, t5; int i;
25 _dadd(&t0, &t1, &t2, &t3, a0, a1, b0, b1);
26 _dlt(&i, q0, q1, t2, t3);
27 _dsub(&t4, &t5, t2, t3, q0, q1);
28 *c0 = i ? t4 : t2; *c1 = i ? t5 : t3; }
29

30 // modular subtraction
31 void _dsubmod(i64 *c0, i64 *c1, i64 a0, i64 a1,
32 i64 b0, i64 b1, i64 q0, i64 q1) {
33 i64 t0, t1, t2, t3, t4, t5; int i;
34 _dsub(&t0, &t1, a0, a1, b0, b1);
35 _dadd(&t2, &t3, &t4, &t5, t0, t1, q0, q1);
36 _dlt(&i, a0, a1, b0, b1);
37 *c0 = i ? t4 : t0; *c1 = i ? t5 : t1; }

Listing 2. Double-word modular addition and subtraction.

comparison in the conditional assignments within _saddmod
and _ssubmod. Thus, we implement _dlt to perform com-
parisons between two double words. In this specific example,
we assume that the single-word data type corresponds to the
machine word (i.e., uint64_t). This implies that for _dsub
and _dlt, native operations can be utilized if we combine
[𝑎640 , 𝑎641 ] and [𝑏640 , 𝑏641 ] into a 128-bit representation and use
the natively supported 128-bit subtraction and comparison.
However, we present an implementation that does not rely
on double-word support to demonstrate how operations are
handled when the abstract single word is not the machine
word. In Section 4, we can then observe a clear mapping
from these double-word operations to formal rewrite rules
within MoMA.

Schoolbook multiplication. In Listing 3, we present the
implementation of schoolbook multiplication, denoted as
_dmuls, as defined by Equation 8. In MoMA, representing
large integers as multiple words simplifies operations such
as shifting by one or multiples of word width. For exam-
ple, shifting 𝑎 = [𝑎640 , 𝑎641 , 𝑎642 , 𝑎643 ] left by one word width
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1 // addition: quad = quad + quad
2 void _qadd(i64 *c0, i64 *c1, i64 *c2, i64 *c3,
3 i64 a0, i64 a1, i64 a2, i64 a3,
4 i64 b0, i64 b1, i64 b2, i64 b3) {
5 i128 s; i64 t0, t1; int cr;
6 _dadd(&t0, &t1, c2, c3, a2, a3, b2, b3);
7 // t1 is either 0 or 1
8 s = (i128) a1 + (i128) b1 + (i128) t1;
9 *c1 = (i64) s; cr = s >> 64;
10 s = (i128) a0 + (i128) b0 + (i128) cr;
11 *c0 = (i64) s; }
12

13 // schoolbook multiplication
14 void _dmuls(i64 *c0, i64 *c1, i64 *c2, i64 *c3,
15 i64 a0, i64 a1, i64 b0, i64 b1) {
16 i64 t0, t1, t2, t3, t4, t5, t6, t7,
17 t8, t9, t10, t11; i128 s;
18 s = (i128) a1 * (i128) b1;
19 t0 = s >> 64; t1 = (i64) s;
20 s = (i128) a0 * (i128) b0;
21 t2 = s >> 64; t3 = (i64) s;
22 s = (i128) a0 * (i128) b1;
23 t4 = s >> 64; t5 = (i64) s;
24 s = (i128) a1 * (i128) b0;
25 t6 = s >> 64; t7 = (i64) s;
26 // a0b1 + a1b0
27 _dadd(&t8, &t9, &t10, &t11, t4, t5, t6, t7);
28 // a0b0z^2 + (a0b1 + a1b0)z + a1b1
29 _qadd(c0, c1, c2, c3, t2, t3, t0, t1,
30 t9, t10, t11, 0); }

Listing 3. Double-word schoolbook multiplication.

results in [𝑎641 , 𝑎642 , 𝑎643 , 0]. To complete Equation 8, we need
to support the addition of two quad-words. This is achieved
through _qadd, which extends _dadd by applying the same
multi-word addition strategy. We have omitted the example
code for Karatsuba multiplication due to space constraints;
however, it can be derived using Equation 9.
Modular multiplication. The most complex operation

for double-word arithmetic is modular multiplication. As il-
lustrated in _dmulmod in Listing 4, it involves three multipli-
cations, two right shifts by non-multiples of the word width,
and a final conditional subtraction. _dmulmod is built upon
_smulmod from Listing 1. To handle shifting by MBITS − 2,
we use _qshr, which shifts a quad-word by 𝑘 bits, where
𝑘 ranges from one single-word width to two single-word
width. Shifting right by MBITS + 5 is more straightforward,
as it involves discarding the lower part of the quad-word.
Note that in the second multiplication, the lower part of the
result is discarded due to the subsequent shift operation.
To implement the double-word version of t -= r * q in

_smulmod, we need to perform a subtraction between two
quad-words. According to Barrett reduction, 𝑡 can only be
either 𝑐 or 𝑐 + 𝑞, where 𝑐 = 𝑎𝑏 mod 𝑞. Since 𝑐 is less than 𝑞

and 𝑞 has a bit-width smaller than the word width, both 𝑐

and 𝑐 + 𝑞 are less than the word width. Consequently, we
only need to subtract the lower part of 𝑟𝑞 from the lower part
of 𝑡 , because the final result will fit within a double word.

1 #define MBITS 124
2

3 // right shift: double = quad >> k, where k in [64, 128]
4 void _qshr(i64 *c0, i64 *c1, i64 a0, i64 a1,
5 i64 a2, i64 a3, int b) {
6 i64 t0, t1, t2, t2, t4, t5, t6, t7; int i0, i1;
7 i0 = b - 64; i1 = 128 - b; t0 = a2 >> i0;
8 /* a mask of 1s */
9 t1 = (i64) 1; t2 = t1 << i0; t3 = t2 - 1;
10 t4 = a0 & t3; t5 = t4 << i1; t6 = a1 >> i0;
11 *c0 = t5 | t6; t7 = a1 << i1; *c1 = t7 || t0; }
12

13 // modular multiplication using Barrett reduction
14 void _dmulmod(i64 *c0, i64 *c1, i64 a0, i64 a1,
15 i64 b0, i64 b1, i64 q0, i64 q1,
16 i64 mu0, i64 mu1) {
17 i64 t0, t1, t2, t3, t4, t5, t6, t7,
18 t8, t9, t10, t11, t12, t13, t14, t15,
19 t16, t17, t18, t19, t20, t21; int i;
20 _dmuls(&t0, &t1, &t2, &t3, a0, a1, b0, b1);
21 _qshr(&t4, &t5, t0, t1, t2, t3, MBITS-2)
22 // t8, t9 will not be used
23 _dmuls(&t6, &t7, &t8, &t9, t4, t5, mu0, mu1);
24 // [t10, t13] = [t6, t7, t8, t9] >> MBITS+5
25 t10 = t6 >> 1; t11 = t6 << 63;
26 t12 = t7 >> 1; t13 = t11 | t12;
27 // t14, t15 will not be used
28 _dmuls(&t14, &t15, &t16, &t17, t10, t13, q0, q1);
29 // optimization given that the first half matches
30 _dsub(&t18, &t19, t2, t3, t16, t17);
31 _dsub(&t20, &t21, t18, t19, q0, q1);
32 _dlt(&i, t18, t19, q0, q1)
33 *c0 = i ? t18 : t20; *c1 = i ? t19 : t21; }

Listing 4. Double-word modular multiplication.

Therefore, _dsub is used, and the higher part of the third
multiplication is not needed.

Multi-word modular arithmetic via recursion. Given
our formal definition of double-word modular arithmetic, we
can now define MoMA through recursion. Let the bit-width
of the input integer be 𝜆. We start by applying double-word
modular arithmetic to break it down into equivalent compu-
tations using data types with bit-width 𝜆/2. This process is
recursively applied to the resulting 𝜆/2 bit-width data types,
continuing until (𝜆/2𝑘 ) ≤ 𝜔0, where𝜔0 is the machine word
width and 𝑘 is the number of recursion steps. For example,
if the input integer 𝑎 is 512 bits and the machine word width
is 64 bits, three recursion steps are required. The data type
breakdown would proceed as follows:

𝑎 = [𝑎2560 , 𝑎2561 ] = [𝑎1280 , 𝑎1281 , 𝑎1282 , 𝑎1283 ] = [𝑎640 , 𝑎641 , . . . , 𝑎647 ] .

The complexity of the associated computations will increase
significantly as we recursively break down the data type.

4 Code Generation: Rewriting on Data
Types

To implement MoMA, we introduce a rule system composed
of numerous rewrite rules that operate on integer data types.
This system recursively decomposes operations involving
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Table 1. Multi-word modular arithmetic core rewrite rules.

𝑎2𝜔 → [𝑎𝜔0 , 𝑎𝜔1 ] (19)

𝑐𝜔0 = ⌊[𝑎𝜔0 , 𝑎𝜔1 ]/2𝜔⌋ → 𝑐𝜔0 = 𝑎𝜔0 (20)

𝑐𝜔0 = [𝑎𝜔0 , 𝑎𝜔1 ] mod 2𝜔 → 𝑐𝜔0 = 𝑎𝜔1 (21)

[𝑐10, 𝑐𝜔1 , 𝑐𝜔2 ] = [𝑎𝜔0 , 𝑎𝜔1 ] + [𝑏𝜔0 , 𝑏𝜔1 ] → [𝛿10, 𝑐𝜔2 ] = 𝑎𝜔1 + 𝑏𝜔1 , [𝑐10, 𝑐𝜔1 ] = 𝛿10 + 𝑎𝜔0 + 𝑏𝜔0 (22)

[𝑐10, 𝑐𝜔1 ] = 𝑎𝜔1 + 𝑏𝜔1 → 𝑐10 = ⌊(𝑎𝜔1 + 𝑏𝜔1 )/2𝜔⌋, 𝑐𝜔1 = (𝑎𝜔1 + 𝑏𝜔1 ) mod 2𝜔 (23)

[𝑐𝜔0 , 𝑐𝜔1 ] = [𝑎10, 𝑎𝜔1 , 𝑎𝜔2 ] mod [𝑞𝜔0 , 𝑞𝜔1 ] → 𝛿10 = [𝑞𝜔0 , 𝑞𝜔1 ] < [𝑎𝜔1 , 𝑎𝜔2 ],
𝛿11 = (0 < 𝑎10) ∨

(
(𝑎10 =?0) ∧ 𝛿10

)
,

[𝑏𝜔0 , 𝑏𝜔1 ] = [𝑎𝜔1 , 𝑎𝜔2 ] − [𝑞𝜔0 , 𝑞𝜔1 ],

[𝑐𝜔0 , 𝑐𝜔1 ] =
{
[𝑏𝜔0 , 𝑏𝜔1 ], if 𝛿11 =?1,

[𝑎𝜔1 , 𝑎𝜔2 ], otherwise

(24)

[𝑐𝜔0 , 𝑐𝜔1 ] = [𝑎𝜔0 , 𝑎𝜔1 ] − [𝑏𝜔0 , 𝑏𝜔1 ] → 𝑐𝜔1 = 𝑎𝜔1 − 𝑏𝜔1 , 𝛿
1
0 = 𝑎𝜔1 < 𝑏𝜔1 , 𝑐

𝜔
0 = 𝑎𝜔0 − 𝑏𝜔0 − 𝛿10 (25)

𝛿10 = [𝑎𝜔0 , 𝑎𝜔1 ] < [𝑏𝜔0 , 𝑏𝜔1 ] → 𝛿10 = (𝑎𝜔0 < 𝑏𝜔0 ) ∨
(
(𝑎𝜔0 =?𝑏

𝜔
0 ) ∧ (𝑎𝜔1 < 𝑏𝜔1 )

)
(26)

𝛿10 = [𝑎𝜔0 , 𝑎𝜔1 ] =? [𝑏𝜔0 , 𝑏𝜔1 ] → (𝑎𝜔0 =?𝑏
𝜔
0 ) ∧ (𝑎𝜔1 =?𝑏

𝜔
1 ) (27)

[𝑐𝜔0 , 𝑐𝜔1 , 𝑐𝜔2 , 𝑐𝜔3 ] = [𝑎𝜔0 , 𝑎𝜔1 ] · [𝑏𝜔0 , 𝑏𝜔1 ] → [𝑑𝜔0 , 𝑑𝜔1 ] = 𝑎𝜔1 · 𝑏𝜔1 , [𝑒𝜔0 , 𝑒𝜔1 ] = 𝑎𝜔0 · 𝑏𝜔0 ,
[𝑓 𝜔0 , 𝑓 𝜔1 ] = 𝑎𝜔0 · 𝑏𝜔1 , [𝑔𝜔0 , 𝑔𝜔1 ] = 𝑎𝜔1 · 𝑏𝜔0 ,
[ℎ10, ℎ𝜔1 , ℎ𝜔2 ] = [𝑓 𝜔0 , 𝑓 𝜔1 ] + [𝑔𝜔0 , 𝑔𝜔1 ],
[𝑐𝜔0 , 𝑐𝜔1 , 𝑐𝜔2 , 𝑐𝜔3 ] = [𝑒𝜔0 , 𝑒𝜔1 , 𝑑𝜔0 , 𝑑𝜔1 ] + [ℎ10, ℎ𝜔1 , ℎ𝜔2 , 0]

(28)

[𝑐𝜔0 , 𝑐𝜔1 , 𝑐𝜔2 , 𝑐𝜔3 ] = [𝑎𝜔0-3] + [𝑏𝜔0-3] → [𝛿10, 𝑐𝜔3 ] = 𝑎𝜔3 + 𝑏𝜔3 , [𝛿11, 𝑐𝜔2 ] = 𝑎𝜔2 + 𝑏𝜔2 + 𝛿10,

[𝛿12, 𝑐𝜔1 ] = 𝑎𝜔1 + 𝑏𝜔1 + 𝛿11, [0, 𝑐𝜔0 ] = 𝑎𝜔0 + 𝑏𝜔0 + 𝛿12
(29)

We use the symbol of equality (=) to denote assignment and the symbol of equality with a question mark (=?)
to indicate a comparison of equality. We assume that any comparison evaluates to 1 if true and 0 if false. For
brevity, we use [𝑎𝜔0-𝑛] to represent the sequence [𝑎𝜔0 , . . . , 𝑎𝜔𝑛 ].

large data types into equivalent operations using smaller
data types until all operations are conducted with data types
natively supported by the machine. In this section, we for-
mally define the rule system, which can be integrated into
compiler infrastructures and code generators. At each recur-
sive step, we treat the current maximal integer data type as
a double word, as discussed in Section 3, and decompose the
computations into equivalent operations with single words.
This process continues until the single word at that step
matches the machine word width. Therefore, to apply the
rule system as a program transformation pass, we assume
that the input bit-width for application kernels is known at
compile/code generation time.
In each recursion step, let the single word width be de-

noted by 𝜔 and the double word width is 2𝜔 . We use 𝑥𝜔 to
represent a single-word integer of bit-width 𝜔 . For instance,
when 𝜔 = 256, a double-word integer can be defined as 𝑎512

and decomposed into two single-word integers using the def-
inition from Equation 14: 𝑎512 = [𝑎2560 , 𝑎2561 ]. This data type
breakdown process is formally defined as rewrite rule (19).
For more complex rules, we use the symbol of equality (=)
to denote assignment. For example, 𝑐2𝜔 = 𝑎𝜔 + 𝑏𝜔 indicates
that the result of 𝑎𝜔 + 𝑏𝜔 is assigned to 𝑐2𝜔 . To denote the
comparison of equality, we use the equality symbol with a
question mark (=?). We use 𝛿1 to represent the result of a
comparison or a carry/borrow bit, with the assumption that
any comparison evaluates to 1 when true and 0 when false.

The core rewrite rules used to implement MoMA are pre-
sented in Table 1. Since each rule reduces the integer bit-
width required during computation, the largest data type
incurred from the right-hand side computations is always
smaller than the largest data type incurred from the left-
hand side operation. On the right-hand side, the sequence of
computations is crucial, as each operation must be executed
from left to right and top to bottom.
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Example: rewriting modular addition. We now show
a concrete example of applying the rewrite rules shown in
Table 1 to break down a double-word modular addition:

𝑐2𝜔 = (𝑎2𝜔 + 𝑏2𝜔 ) mod 𝑞2𝜔 , (30)

where 𝑞 is the modulus. When 𝜔 = 64, we can imple-
ment 𝑎𝜔 using the uint64_t data type and 𝑎2𝜔 using the
unsigned __int128 data type in C. The above operation can
then be directly mapped to the implementation of _daddmod
in Listing 2:

1 void _daddmod(i64 *c0, i64 *c1, i64 a0, i64 a1,
2 i64 b0, i64 b1, i64 q0, i64 q1)

For illustration purposes, in this example we consider𝜔 to be
the bit-width of the abstract single word at a recursion step
that is not the final recursion step, that is, 𝜔 > 𝜔0, where 𝜔0
is the machine word width.

To begin with, by (19), we can decompose 𝑐2𝜔 into [𝑐𝜔0 , 𝑐𝜔1 ]
by performing floor division and modulo operation with 2𝜔
to extract the higher and lower parts, respectively. These
operations are formally represented by (20) and (21). Note
that, when dealing with an abstract single word during inter-
mediate recursion steps, we do not need to explicitly perform
floor division and modulo operations. Instead, we can con-
ceptually transform a single variable 𝑐2𝜔 into an array of
two variables, [𝑐𝜔0 , 𝑐𝜔1 ]. It is only at the final recursion step,
when the abstract representation must be concretized into
actual code, that we need to implement these operations ex-
plicitly. Specifically, we use a right shift by 𝜔0 to extract the
higher part and typecasting to T𝜔0 to extract the lower part,
where T𝜔0 represents the integer data type corresponding
to the machine word width 𝜔0. For instance, in C, if 𝜔 = 64,
then T𝜔0 is uint64_t. We also apply (19) to 𝑎2𝜔 , 𝑏2𝜔 , 𝑞2𝜔 and
obtain

[𝑐𝜔0 , 𝑐𝜔1 ] = ( [𝑎𝜔0 , 𝑎𝜔1 ] + [𝑏𝜔0 , 𝑏𝜔1 ]) mod [𝑞𝜔0 , 𝑞𝜔1 ] . (31)

Then, to compute a double-word addition [𝑎𝜔0 , 𝑎𝜔1 ] + [𝑏𝜔0 , 𝑏𝜔1 ],
we apply (22) which in turn uses (23) to break down double-
word addition to single-word additions. Thus, we have rewr-
ited (30) into

[𝛿10, 𝑑𝜔2 ] = 𝑎𝜔1 + 𝑏𝜔1 ,
[𝑑10, 𝑑𝜔1 ] = 𝛿10 + 𝑎𝜔0 + 𝑏𝜔0 ,
[𝑐𝜔0 , 𝑐𝜔1 ] = [𝑑10, 𝑑𝜔1 , 𝑑𝜔2 ] mod [𝑞𝜔0 , 𝑞𝜔1 ] .

(32)

We then need to rewrite [𝑑10, 𝑑𝜔1 , 𝑑𝜔2 ] mod [𝑞𝜔0 , 𝑞𝜔1 ] as native
modulo support is not available for an integer with a bit-
width of 2𝜔 + 1. As we introduced earlier in Section 2.1,
modulo after addition can be computed by a comparison,
a subtraction, and a conditional assignment. Therefore, by

(24), we have

[𝛿10, 𝑑𝜔2 ] = 𝑎𝜔1 + 𝑏𝜔1 ,
[𝑑10, 𝑑𝜔1 ] = 𝛿10 + 𝑎𝜔0 + 𝑏𝜔0 ,

𝛿10 = [𝑞𝜔0 , 𝑞𝜔1 ] < [𝑑𝜔1 , 𝑑𝜔2 ],
𝛿11 = (0 < 𝑑10) ∨

(
(𝑑10 =?0) ∧ 𝛿10

)
,

[𝑓 𝜔0 , 𝑓 𝜔1 ] = [𝑑𝜔1 , 𝑑𝜔2 ] − [𝑞𝜔0 , 𝑞𝜔1 ],

[𝑐𝜔0 , 𝑐𝜔1 ] =
{
[𝑓 𝜔0 , 𝑓 𝜔1 ], if 𝛿11 =?1,

[𝑑𝜔1 , 𝑑𝜔2 ], otherwise.

(33)

Lastly, there are two double-word computations that need
to be broken down: i) 𝛿10 = [𝑞𝜔0 , 𝑞𝜔1 ] < [𝑑𝜔1 , 𝑑𝜔2 ] and ii)
[𝑓 𝜔0 , 𝑓 𝜔1 ] = [𝑑𝜔1 , 𝑑𝜔2 ]−[𝑞𝜔0 , 𝑞𝜔1 ]. Using (25) and (26), we obtain

[𝛿10, 𝑑𝜔2 ] = 𝑎𝜔1 + 𝑏𝜔1 ,
[𝑑10, 𝑑𝜔1 ] = 𝛿10 + 𝑎𝜔0 + 𝑏𝜔0 ,

𝛿10 = (𝑞𝜔0 < 𝑑𝜔1 ) ∨
(
(𝑞𝜔0 =?𝑑

𝜔
1 ) ∧ (𝑞𝜔1 < 𝑑𝜔2 )

)
,

𝛿11 = (0 < 𝑑10) ∨
(
(𝑑10 =?0) ∧ 𝛿10

)
,

𝑓 𝜔1 = 𝑑𝜔2 − 𝑞𝜔2 , 𝛿
1
0 = 𝑑𝜔2 < 𝑞𝜔2 , 𝑓

𝜔
0 = 𝑑𝜔1 − 𝑞𝜔1 − 𝛿10,

[𝑐𝜔0 , 𝑐𝜔1 ] =
{
[𝑓 𝜔0 , 𝑓 𝜔1 ], if 𝛿11 =?1,

[𝑑𝜔1 , 𝑑𝜔2 ], otherwise.

(34)

Note that double-word assignments, such as [𝑐𝜔0 , 𝑐𝜔1 ] =

[𝑎𝜔0 , 𝑏𝜔1 ], can be trivially implemented by individually as-
signing the corresponding single words. The same applies to
conditional assignments. Consequently, we do not explicitly
list these transformations as rewrite rules.
The above sequence of computations directly maps to

_daddmod in Listing 2 which consists of _add, _dlt, _dsub
and a conditional assignment at the end. In other words,
when 𝜔 = 64, Equation 34 can be implemented exactly as
shown for _daddmod. However, if 𝜔 exceeds the machine
word width and further recursion is required, an additional
rule (27) is needed to break down the equality comparison
in (24) and (26).
In summary, we use the rules from (19) to (27) to decom-

pose double-word modular addition. The same set of rules
is sufficient to break down double-word modular subtrac-
tion. For double-word multiplication (without modulo), two
additional rules, (28) and (29), are necessary. Due to space
constraints, the remaining rules developed for MoMA are
omitted.
Non-power-of-two input bit-widths. The proposed

mathematical formalism directly enables optimizations for
inputs with non-power-of-two bit-widths, which is common
in ZKP applications where the input bit-widths are often 381
bits (e.g., for the BLS12-381 elliptic curve) or 753 bits (e.g., for
theMNT4753 elliptic curve). Let the non-power-of-two input
bit-width be denoted by 𝜆, and let 𝜔 be the closest power-of-
two less than 𝜆, i.e.,𝜔 < 𝜆 < 2𝜔 . In this case, while using the
data type T2𝜔 to represent the input with bit-width 𝜆 allows
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us to apply MoMA rewrite rules, many operations will in-
volve zeros and/or evaluate to zero at runtime. Additionally,
the number of these redundant operations cascades as the
recursion depth required to reduce the bit-width to machine
words grows, particularly when (2𝜔 − 𝜆) > (𝜆 − 𝜔). For
example, when 𝜆 = 576 and 𝜔 = 512, 448 bits per input are
zero at runtime, offering room for optimization by pruning
no-ops during code generation.
Since we assume the input bit-width is known at com-

pile/code generation time, it is straightforward to optimize
operations on redundant bits using MoMA and the associ-
ated rule system. Let 𝜔0 denote the machine word width,
which is typically a power of two. For any bit-width 𝜆

such that 𝜔 < 𝜆 < 2𝜔 , we represent 𝜆 using 𝑘𝜔0, where
(𝑘 − 1)𝜔0 < 𝜆 < 𝑘𝜔0. Using the multi-word representation
defined in Equation 14 and let 𝑥 be the input with bit-width
𝜆, we have

𝑥 = [0, . . . , 0, 𝑥𝜔0
0 , . . . , 𝑥

𝜔0
𝑘−1] . (35)

For example, when 𝜆 = 753 and 𝜔0 = 64, 𝑥 can be written as

[0, 0, 0, 0, 𝑥640 , . . . , 𝑥6411], (36)

or equivalently, [0, 0, 𝑥1280 , . . . , 𝑥1285 ] and [0, 𝑥2560 , 𝑥2561 , 𝑥2562 ].
This implies that, during the recursive application of MoMA
rewrite rules, we can set many single words (with bit-width
𝜔) to zero at certain recursion levels, thereby pruning many
operations at compile time. We employed this optimization
when evaluating NTTs for 384-bit and 768-bit inputs.

Implementation. We implement MoMA using the
rewrite rules detailed in this section through a high-
performance code generator, SPIRAL [20]. SPIRAL converts
high-level mathematical specifications into highly optimized
code for various architectures. It provides a declarative and
platform-agnostic mathematical language that offers excel-
lent support for implementing mathematically formal rule
systems. Specifically, we implement the MoMA rewrite rules
as a recursive code generation pass that operates at the ab-
stract code level in SPIRAL. Given the input bit-width and the
machine word width, this pass generates equivalent abstract
code where each variable’s data type is natively supported
by the machine. We build on the SPIRAL NTTX package [58]
to map the final abstract code to efficient CUDA implemen-
tations on GPUs.

5 Evaluation
In this section, we describe the experimental setup and dis-
cuss the results of applying the MoMA rule system to im-
plement BLAS operations and NTT for inputs with large
bit-widths.

5.1 Experimental Setup
Prior work [59] introduced a code generation pass in SPIRAL
targeting NVIDIA GPUs for NTTs (encapsulated within the

SPIRAL NTTX package [58]). However, this work was lim-
ited to NTTs and only supported input bit-widths twice the
machine word width (e.g., 128 bits on NVIDIA GPUs), relying
on manually implemented double-word modular arithmetic
functions.

We extended this work by implementing the MoMA rule
system as a recursive program transformation pass, enabling
the NTTX package to handle much larger bit-widths. Addi-
tionally, we expanded the SPIRAL NTTX package to gener-
ate efficient implementations for BLAS operations, including
vector addition, subtraction, multiplication, and axpy (vector-
scalar product followed by vector addition). This extension
significantly broadens the NTTX package’s capabilities, al-
lowing it to support a wide range of cryptographic workloads
through efficient polynomial arithmetic.
Parallelization techniques. MoMA, built on top of the

SPIRAL NTTX package [58, 59], leverages the paralleliza-
tion techniques provided by the framework. For NTTs, each
CUDA thread processes one or more butterfly operations in
each stage of the NTT, as there are no data dependencies
between butterfly operations within the same stage. This
parallelism is limited to min(𝑛/2, 1024)-way for NTTs of size
𝑛, as each stage consists of 𝑛/2 butterflies and each thread
block can support up to 1,024 threads. We refer readers to
prior works [58, 59] on the NTTX package for further details.
For BLAS operations, each CUDA thread handles the com-
putation for one element of the input vector. Therefore, we
can perfectly parallelize up to 1,024-way vector-vector BLAS
operations. As both ZKPs and FHE require multiple NTTs
and BLAS operations to run concurrently [1, 32, 40, 60], we
employ batch processing on the GPU to harness additional
levels of parallelism. This allows us to comprehensively eval-
uate the full computational capabilities of a single GPU for
executing cryptographic kernels.

Measuring kernel runtime.We calculate the runtime for
a single NTT and BLAS operation as 𝑡single = 𝑡all/𝑘 , where 𝑘
is the batch size. We report the steady-state runtime, defined
as the minimum 𝑡single achievable across all batch sizes, from
one to the maximum batch size that can be compiled and
run. Empirically, for NTTs, close-to-minimal steady-state
runtime is achieved with a batch size greater than 8 for input
bit-widths ranging from 128 to 384 bits, and greater than 64
for 768-bit inputs. For BLAS operations, close-to-minimal
steady-state runtime is achieved with a batch size greater
than 128.
To profile kernel runtime (i.e., 𝑡all), we use the

nsys nvprof profiling tool provided by the NVIDIA
HPC SDK from the command line. BLAS operations and
smaller NTTs (less than 1,024-point) are compiled with-
out any additional flags. For larger NTTs, we compile with
-Xcompiler -mcmodel=medium -Xcompiler \"-Wl,--no-relax\" to
handle very large array sizes. In line with previous work
on NTT acceleration, we exclude data transfer time between
the CPU and GPU from the performance measurements.
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(a) 128-bit (b) 256-bit (c) 512-bit (d) 1,024-bit

Figure 2. Performance of BLAS operations with various input bit-widths on CPU and GPU.

Hardware configuration. We benchmarked the perfor-
mance of SPIRAL-generated cryptographic kernels across
three types of GPUs from different hardware generations
and price points. The NVIDIA H100 Tensor Core (H100) and
NVIDIA Tesla V100 Tensor Core (V100, provided by Bridges-
2 at Pittsburgh Supercomputing Center [9]) represent two
generations of server-class GPUs, released in 2023 and 2017,
respectively. The NVIDIA GeForce RTX 4090 (RTX 4090),
launched in 2022, is a consumer-grade GPU primarily de-
signed for gaming and video editing. Detailed specifications
for each GPU are provided in Table 2.

Table 2. NVIDIA GPUs used for benchmarking.

Model H100 RTX 4090 V100

#Cores 16896 16384 5120
Max Freq. 1980 MHz 2595 MHz 1530 MHz
RAM Size 80 GB 24 GB 32 GB
Bus Type HBM3 GDDR6X HBM2
Toolkit 12.2 12.0 11.7

5.2 BLAS Operation Results
We first evaluated MoMA’s performance on BLAS kernels
that are commonly used in encryption schemes [1], namely
vector multiplication, vector addition, vector subtraction,
and axpy, with four different input bit-widths: 128 bits, 256
bits, 512 bits, and 1,024 bits. In cryptographic settings, the bit-
width of the modulus is usually slightly less than a power
of two or a multiple of a power of two. For example, in
ZKPs, prior works [29, 37] use moduli of 377 bits and 753
bits, based on the underlying elliptic curves, while for FHE,
researchers [52] employ a 116-bit modulus. For consistency
and ease of comparison, we categorize the bit-widths of
prior works into the nearest (multiple of a) power-of-two
category relative to their actual modulus bit-width when
presenting the results for both BLAS operations and NTTs.
In many prior approaches that use Barrett reduction for
cryptographic kernels [32, 35, 41, 52, 55], the modulus 𝑞 is
less than or equal to 𝑘−4 bits to ensure that 𝜇 remains within

𝑘 bits, where 𝑘 represents the nearest (multiple of a) power-
of-two bit-width in context. Similarly, our work employs a
modulus with a bit-width of 𝑘−4 (e.g., 124 bits in the context
of 128-bit results). It is noteworthy that the infrastructure we
developed in SPIRAL using MoMA also supports a modulus
of full bit-width, employing Montgomery multiplication [38].
We compared MoMA against the state-of-the-art inte-

ger multi-precision libraries on both CPU and GPU. The
GNU Multiple Precision Arithmetic Library (GMP) [22] is
a widely recognized library for multi-precision arithmetic
on CPUs, supporting both integer and floating-point arith-
metic. GRNS [30], which relies on GMP for initialization,
supports basic arithmetic by using RNS to decompose very
large integers into natively supported integers and employs
floating point processing units on GPUs. We benchmarked
MoMA-based implementations and GRNS (version 1.1.4) on
V100, and GMP (version 6.1.2) on the Intel Xeon Gold 6248 @
2.50GHz. For each BLAS operation with each input bit-width,
we executed the vector operation in batch and measured the
runtime for processing 220 integers in total. We report the
steady-state runtime per element, defined as the total run-
time 𝑡all divided by 220. For the GMP-based implementation,
we utilized OpenMP for parallelization on CPU, with the
OpenMP directive #pragma omp parallel for.

The results presented in Figure 2 demonstrate that MoMA-
based implementations outperform both GMP and GRNS
across all four operations with bit-widths ranging from 128
bits to 1,024 bits, achieving speedups of at least 13 times. For
multiplication-based kernels, namely, vector multiplication
and axpy, MoMA’s speedup increases relative to GRNS but
diminishes compared to GMP (although still maintaining a
speedup of over 10 times for 1,024-bit inputs). This behavior
is expected, as GMP utilizes fast Fourier transform (FFT)-
based algorithms for large bit-width multiplications, which
is reflected in the fact that GMP’s runtime for 512-bit and
1,024-bit inputs is lower than for 128-bit and 256-bit inputs.
For addition and subtraction operations, GRNS outperforms
GMP across all bit-widths, with GMP narrowing the gap
as bit-width increases. MoMA achieves at least 31 times
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(a) 128-bit (b) 256-bit

(c) 384-bit (d) 768-bit

Figure 3. Performance of NTT with various input bit-widths on CPUs, GPUs, and ASICs.

speedup over GRNS and at least 527 times speedup over
GMP for addition and subtraction operations.

5.3 NTT Results
Following the assessment of BLAS operations, we evaluated
MoMA’s performance on a more complex cryptographic
kernel that serves as a core component in both FHE and
ZKP workloads, NTT. For NTT evaluations, we did not em-
ploy any specialized primes (e.g., Goldilocks primes [26]
or Montgomery-friendly primes [3]) for performance gain,
thereby ensuring the rule system’s general-purpose appli-
cability. The code generator SPIRAL equipped with MoMA
proved to be highly versatile and performant, allowing us
to compare it against eight baseline implementations, each
typically optimized for specific input bit-widths and NTT
sizes. In terms of generalizability, the closest comparable
library is ICICLE [29], which supports NTTs for two input
bit-widths (256 bits and 768 bits) and is applicable across
all tested NTT sizes (ranging from 28 to 222). Despite this,
MoMA demonstrates a significant performance advantage,
achieving a 13 times speedup over ICICLE for 256-bit in-
puts and a 4.8 times speedup for 384-bit inputs. In terms
of performance, MoMA-based NTT running on RTX 4090,
a $2,000 consumer-grade GPU, outperforms NTTs on two

state-of-the-art ASICs (RPU [52] and Zhou et al.’s work [63]),
for 128-bit and 256-bit inputs. In the following texts, we refer
to Zhou et al.’s work as FPMM and our MoMA-based NTT
as MoMA.

In the context of NTT, a butterfly operation includes one
modular addition, one modular subtraction, and one modular
multiplication. In Figure 3, we present the runtime per but-
terfly for our approach and all baselines on the y-axis. This
metric is defined as 2𝑡single/(𝑛 log2 𝑛), where 𝑛 is the NTT
size, (𝑛 log2 𝑛)/2 is the number of butterflies in an 𝑛-point
NTT, and 𝑡single is the runtime for a single 𝑛-point NTT.

128-bit inputs. In Figure 3a, for NTT sizes up to 210, the
entire NTT fits within the GPU’s shared memory, which
accounts for the significant slowdown observed on V100 for
size 211 and larger. On H100 and RTX 4090, going out of the
shared memory results in a 1.5 times slowdown. We com-
pare our results against two CPU baselines, OpenFHE [1]
(based on the benchmarking results reported by RPU [52])
and AVX-NTT [21], as well as two ASIC baselines, RPU and
FPMM [63]. On H100, MoMA outperforms RPU, an acceler-
ator specifically designed for FHE, by 1.4 times on average
and FPMM by 1.8 times on average. Notably, on RTX 4090, a
consumer-grade GPU, MoMA achieves an average speedup
of 1.3 times over RPU and 1.7 times over FPMM.
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Figure 4. Performance of 216-point NTT with input bit-widths ranging from 128 to 1,024 on CPUs, GPUs, and ASICs.

256-bit inputs. Figure 3b comparesMoMAwith twoGPU-
based approaches, GZKP [37] and ICICLE [29], and twoASIC-
based approaches, PipeZK [60] and FPMM. On H100, our
approach shows a 13 times average speedup across all tested
NTT sizes over ICICLE. On all three tested GPUs, MoMA out-
performs PipeZK, an ASIC designed to accelerate ZKPs using
a pipelined architecture. On the H100 and RTX 4090, MoMA
also outperforms FPMM, an ASIC with reported results for
two NTT sizes. On V100, MoMA is outperformed by GZKP
for large NTT sizes due to the fact that GZKP exploits all the
floating-point processing units on GPU. However, MoMA
outperforms GZKP on smaller sizes, even when using only
integer processing units.

384-bit inputs. For 384-bit inputs, as shown in Figure 3c,
we compare MoMA with ICICLE on H100 and FPMM, an
ASIC. MoMA on H100 achieves an average speedup of 4.8
times across all tested NTT sizes against ICICLE. Moreover,
on V100, MoMA also outperforms ICICLE on H100 by 3
times on average. MoMA-based NTT runs into segmentation
faults at size 221 on both RTX 4090 and V100, with an error
message indicating running out of the stack space during
compilation. Although MoMA outperforms FPMM for 128-
bit and 256-bit inputs, FPMM achieves a 1.7 times speedup
over our approach at 384-bit inputs.
768-bit inputs. In Figure 3d, we compare MoMA with

PipeZK, GZKP, and Libsnark [34]. Libsnark is a CPU-based
ZKP library that implements 768-bit NTTs, and we plot the
benchmarking results of Libsnark as reported by GZKP. For
768-bit inputs, RTX 4090 outperforms H100 until the NTT
code runs into a segmentation fault at size 216 (which also
occurs for V100). The speedup of RTX 4090 over H100 could
be attributed to its higher clock speed. As the bit-width in-
creases, each butterfly operation becomes significantly more
computationally intensive. In such scenarios, a GPU with a
higher clock speed, such as RTX 4090, may be more favorable.
Both H100 and RTX 4090 outperform PipeZK, with H100
achieving a 2 times speedup over PipeZK for sizes ranging
from 214 to 220. However, the performance of H100 degrades
significantly beyond size 220, suggesting that the hardware

or compiler limits are being approached. For 768-bit inputs,
from size 216 onwards, MoMA is outperformed by GZKP.
This comparison highlights that utilizing all floating-point
units on the GPU is a clear advantage for accelerating NTT
computations, especially with large input bit-widths. Since
MoMA rewrite rules are well-defined and composable, future
efforts could leverage GPU floating-point processing units
and utilize specialized primes, such as Montgomery-friendly
primes for certain ZKP applications, to further improve per-
formance.

Comparison among multiple input bit-widths. As de-
tailed in Section 4, MoMA’s formalism enables optimizations
for inputs with non-power-of-two bit-widths. This allows
MoMA to optimally support a wide range of fine-grained bit-
widths, rather than resorting to zero-padding the inputs to
the nearest power-of-two. Figure 4 illustrates this flexibility,
where we compare the performance of MoMA with NTTs
implemented using the state-of-the-art multi-precision li-
brary GMP, along with results from other works discussed
earlier, plotted for the relevant bit-widths. This plot can be
interpreted as a cross-cut of the four subplots in Figure 3,
where we use an NTT size of 216 and assemble the subplots
accordingly. We choose 216 as the NTT size because for this
size there exists the most comparable work across multiple
input bit-widths. The key takeaway from this plot is that
MoMA demonstrates: i) significant performance improve-
ments over libraries supporting general input bit-widths,
and ii) comparable performance to approaches that utilize
specialized hardware and/or are optimized for a limited set
of input bit-widths.

5.4 Sensitivity Analysis
We now conduct two sensitivity analyses on MoMA’s per-
formance, examining the impact of input bit-width and the
choice of multiplication algorithm on NTT runtime. Both
analyses are performed with a fixed NTT size of 4,096.

Impact of input bit-width on runtime. We investigate
how the performance of MoMA-based NTT scales with in-
creasing input bit-width. In Figure 5a, we benchmark MoMA-
based NTTs for input bit-widths ranging from 64 to 1,024 bits
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(a) Runtime against input bit-width
on H100 and RTX 4090.

(b) Comparison between the Karat-
suba algorithm and the Schoolbook
algorithm on RTX 4090.

Figure 5. Sensitivity analyses on NTT runtime.

on both H100 and RTX 4090. We observe that both GPUs ex-
hibit similar scaling trends with increasing bit-width. Specif-
ically, from 320 bits to 512 bits, both RTX 4090 and H100
show a linear increase in runtime. However, at 576 bits, the
runtime on H100 starts to increase non-linearly, while on
RTX 4090 it maintains a linear increase up to 640 bits. Be-
yond 512 bits, the performance gap between RTX 4090 and
H100 remains relatively constant. On H100, we observe a 2.9
times slowdown when increasing from 64 bits to 128 bits,
a 5.6 times slowdown from 128 bits to 256 bits, a 4.8 times
slowdown from 256 bits to 512 bits, and a 4.7 times slowdown
from 512 bits to 1,024 bits. The corresponding slowdowns
on RTX 4090 are 2.7, 4, 4.6, and 3.5 times, respectively.

Choices of multiplication algorithm. As discussed in
Section 2.2, MoMA offers two implementation choices for
multiplication: i) the Schoolbook algorithm and ii) the Karat-
suba algorithm. The Schoolbook algorithm for double-word
multiplication requires 4 single-word multiplications and
6 single-word additions (excluding carry propagation). In
contrast, the Karatsuba algorithm uses 3 single-word multi-
plications, 12 single-word additions/subtractions (excluding
carry propagation), and several single-word comparisons.
The Karatsuba algorithm reduces the number of multiplica-
tions, which are typically the most computationally intensive
operations, by replacing one multiplication with several rel-
atively cheaper additions. In MoMA, both algorithms are
included and, when implemented in the SPIRAL code gener-
ator, users can select the preferred multiplication algorithm
to optimize performance on the target hardware. Figure 5b
compares the performance of the Schoolbook algorithm and
the Karatsuba algorithm for NTT computations on RTX 4090
across various bit-widths. For 128-bit and 256-bit inputs, the
Karatsuba algorithm outperforms the Schoolbook algorithm
by 2.1 times and 1.7 times, respectively. Both algorithms
exhibit similar performance for 384-bit inputs, while the
Schoolbook algorithm begins to outperform the Karatsuba
algorithm for 768-bit inputs, with a 1.6 times speedup.

6 Related Work
We review the state-of-the-art approaches for multi-
precision integer arithmetic and prior work on NTT acceler-
ation.
Multi-precision integer arithmetic. There are many

prior work that efficiently implements multi-precision arith-
metic. However, many focus on a single bit-width or a limited
range of bit-widths [16, 18, 39, 42, 43, 59, 61, 62], focus on
one arithmetic operation (usually multiplication) [14, 17, 23,
33, 49], or is limited to a specific CPU/GPU architecture or a
specific ASIC design [10, 44, 52, 63]. There are also libraries
designed for generalizability, which implement arbitrary
precision arithmetic. One of the most well-known and well-
maintained libraries is GMP [22]. Other libraries such as a
library for doing number theory (NTL) [51] and fast library
for number theory (FLINT) [27] also support arbitrary preci-
sion arithmetic but use GMP behind the scenes. As GMP is
written in C, both GMP and libraries that depend on GMP
run on CPU only. On the other hand, many programming
languages, such as Python and Rust, offer native support for
computations with arbitrarily large integers. However, as
prior studies have shown [28], these languages are generally
outperformed by GMP in terms of performance. GRNS [30]
is a GPU-based arbitrary precision integer library that relies
on GMP for initialization. GRNS uses RNS to break down
very large integers into natively supported integers and uti-
lizes floating-point processing units on GPU for RNS-based
integer arithmetic. MoMA outperforms both GMP and GRNS
on all four common input bit-width for popular encryption
schemes by orders of magnitude, as shown in Figure 2 and 4.

NTT acceleration. Numerous works have been proposed
to accelerate NTT due to its significance in terms of run-
time in FHE and ZKP workloads. Most of the prior work
focuses on designing specific accelerators [45, 46, 52, 54, 63]
to address the prohibitive computational overhead intro-
duced by FHE and ZKPs. GPU-based approaches for ac-
celerating NTT primarily focus on input bit-widths that
is natively supported by the machine (i.e., 32 bits and 64
bits) [15, 32, 35, 36, 40, 41, 50, 53, 55, 56]. ICICLE [29] is
a very relevant work that offers great generalizability as
a high-performance cryptographic acceleration library. As
shown in Figure 3, ICICLE is the only work that can com-
pile and run on all NTT sizes that we tested on two input
bit-widths. GZKP [37] is another GPU-based approach that
accelerates NTT of sizes larger than machine word width.
As mentioned at the end of Section 5.3, GZKP leverages
GPU floating-point processing units, a feature that can be
incorporated into MoMA given the generalizability of the
rewrite rules; however, this is beyond the scope of this work.
There are many CPU-based libraries for FHE and ZKP work-
loads [1, 7, 8, 11, 13, 25, 34]. Most of these libraries prior-
itize generalizability (e.g., supporting various encryption
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schemes) and demonstrate suboptimal performance on NTTs
compared to GPU- and AISC-based approaches [52].

7 Discussion
As shown in Figures 2, 3 and 4, MoMA-based kernels demon-
strate strong performance for bit-widths between 128 and
1,024 bits. However, the performance gap with the state-
of-the-art multi-precision library narrows as the bit-width
increases. We anticipate that, for example, GMP’s FFT-based
multiplication will outperform MoMA for very large bit-
widths (e.g., 8,192 bits). Nonetheless, as a rule system, MoMA
can incorporate algorithms tailored to specific scenarios due
to its composable and well-defined formalism. We believe
that MoMA’s exceptional performance on bit-widths rele-
vant to FHE and ZKPs opens the door to exploring new
encryption schemes involving large bit-widths, as the cost of
exceeding machine word arithmetic has been significantly
reduced.

Driven by artificial intelligence (AI) and machine learning
(ML) applications, customized hardware continues trending
toward smaller machine word widths (e.g., 16-bit unsigned
integer on the Cerebras Wafer Scale Engine [48]). However,
FHE, an enabling encryption scheme for privacy-preserving
AI/ML, requires support for large integer arithmetic. FHE-
specific hardware is therefore designed to natively support
large bit-width arithmetic operations (e.g., 128-bit modu-
lar arithmetic supported by RPU [52]). As future work, we
plan to investigate whether MoMA can work effectively on
AI/ML-specialized hardware to keep the runtime of FHE-
based workloads manageable with native small integer arith-
metic. In other words, we aim to explore whether MoMA
can bridge the gap between these two conflicting hardware
trends at the software level. Moreover, we plan to integrate
MoMA into various compilers, ranging from generic frame-
works like LLVM to specialized compilers such as the CSL
compiler for Cerebras accelerators, further expanding the
impact of our approach.

8 Conclusion
To address the critical need for efficient large integer arith-
metic in cryptographic applications, our work formally de-
finesMoMA,which decomposes large bit-width integer arith-
metic into operations based onmachinewords.We developed
a mathematically formal rewrite system that implements
MoMA and can be seamlessly integrated into compilers and
code generators. For evaluation, we implemented the MoMA
rule system in SPIRAL and generated cryptographic kernels,
including BLAS operations and NTTs, across three types of
GPUs. Our results show that the generated BLAS operations
outperform state-of-the-art multi-precision libraries by sev-
eral orders of magnitude, while MoMA-based NTT achieves
near-ASIC performance on commodity GPUs.
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A Artifact Appendix
A.1 Abstract
Our artifact [57] includes the source code for MoMA, requir-
ing NVIDIA GPUs along with nvcc and nsys nvprof for
compilation and performance profiling. While installing the
SPIRAL code generation system is highly recommended for
full reproducibility and customization, it is not required, as
we provide pre-generated NTT and BLAS code from SPIRAL
to reproduce key results.

A.2 Artifact Checklist (Meta-information)
• Program: MoMA as part of the SPIRAL NTTX package.
The artifact includes benchmarking data for NTT and BLAS
operations.

• Compilation: The artifact requires nvcc >= 11.7 to compile
the generated CUDA code and nsys >= 2022.4.2 for perfor-
mance measurement.

• Transformations: SPIRAL >= 8.5.0 is required for code gen-
eration; however, pre-generated code is provided for users
who prefer not to install SPIRAL or spend time on code
generation.

• Hardware: NVIDIA GPUs as detailed in Table 2.
• Execution: We provide a Bash script to benchmark the
pre-generated code directly or to invoke SPIRAL for code
generation followed by benchmarking.

• Metrics: Execution time.
• Output: Performance measurements will be displayed in
the terminal window.

• Experiments: A detailed README file in the nttx directory
explains how to reproduce key results, with or without SPI-
RAL installation. Expected outputs for specific cases are also
provided in the README file.

• How much disk space required (approximately)?:
Around 50 MB.
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• How much time is needed to prepare workflow (ap-
proximately)?: Using pre-generated code, the user can
immediately execute the workflow via an automated bench-
marking script. Installing SPIRAL typically takes less than
an hour.

• Howmuch time is needed to complete experiments (ap-
proximately)?: Using pre-generated code, benchmarking
1,024-point NTTwith 256-bit inputs takes approximately five
minutes. Starting from code generation, this process takes
approximately six minutes. Completing all experiments on
all three GPUs from end to end may take days, as the code
generation time increases exponentially with the input bit-
width.

• Publicly available?: Yes.
• Archived (provide DOI)?: 10.5281/zenodo.14564393.

A.3 Description
Here we provide a short description of how the artifact is delivered
and its dependencies.

How delivered. The artifact is provided as a zip file available
on Zenodo1 and as a repository on GitHub2. The artifact requires
approximately 50 MB of disk space.

Hardware dependencies. NVIDIA GPUs. The key results in
this paper were obtained using NVIDIA H100, V100, and RTX 4090
GPUs, with details provided in Table 2.

Software dependencies. nvcc >= 11.7 and nsys >= 2022.4.2.
SPIRAL >= 8.5.0 is highly recommended but not required.

A.4 Installation
SPIRAL can be installed following its installation guide3. To
link the artifact with SPIRAL, place the artifact into the
spiral-software/namespaces/packages/ subdirectory of the
SPIRAL installation tree.

A.5 Experiment Workflow
A detailed README file is provided at nttx/README.md. For example,
with SPIRAL installed, users can reproduce our 128-bit NTT results
on H100 by running the following commands:

$ cd nttx/cuda/cuda-test
$ bash ./benchmark.sh -d 128 -p h100

The option -d specifies the input bit-width (128, 256, 384, or 768),
while -p enables performance tuning for the target platform (cur-
rently supported platforms are H100, V100, and RTX 4090). For
other platforms, the -p option can be omitted, which defaults to
-p general.

A.6 Evaluation and Expected Result
After completing the experiments, the terminal will display the re-
sults as follows: for NTT, the runtime per butterfly and the runtime
per NTT for each NTT size; for BLAS operation, the runtime per
element and the runtime per vector operation. All runtimes are
reported in nanoseconds.

1https://doi.org/10.5281/zenodo.14564393
2https://github.com/naifeng/moma
3https://github.com/spiral-software/spiral-software
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