

Code Generation for Cryptographic Kernels using Multi-word Modular Arithmetic on GPU

Naifeng Zhang, Franz Franchetti

Carnegie Mellon University

CGO 2025

Great Data Security Comes at a High Cost

Fully homomorphic encryption (FHE)

Zero-knowledge proofs (ZKPs)

Cost: Prohibitive computational overhead

Polynomial Operations with LARGE Integer Arithmetic

• Polynomial addition over a finite field \mathbb{Z}_q : $c_i = a_i + b_i \mod q$

$$\bigcirc - + \underbrace{b_0 + b_1 x + a_2 x^2 + \dots + a_n x^n}_{c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n} \\ f q \text{ has 768 bits}$$

Cryptographic Kernel I: BLAS(-Like) Operations

Polynomial addition (over \mathbb{Z}_q)

 $c_i = a_i + b_i \bmod q$

$$a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$
$$\hookrightarrow [a_0, a_1, a_2, \dots, a_n]$$

Polynomial subtraction

Point-wise polynomial multiplication

Vector addition

$$c_i = a_i + b_i \bmod q$$

 $[c_0, c_1, c_2, \cdots, c_n] =$ $[a_0, a_1, a_2, \cdots, a_n] + [b_0, b_1, b_2, \cdots, b_n]$

Vector subtraction

Point-wise vector multiplication

Basic Linear Algebra Subprograms (BLAS)

Cryptographic Kernel II: Number Theoretic Transform

Polynomial multiplication

• Schoolbook multiplication takes $O(n^2)$

$$a_{0} + a_{1}x + a_{2}x^{2} + \dots + a_{n}x^{n}$$

$$\times \qquad b_{0} + b_{1}x + b_{2}x^{2} + \dots + b_{n}x^{n}$$
Not obvious!
$$c_{0} + c_{1}x + c_{2}x^{2} + \dots + c_{n}x^{n}$$

• Number Theoretic Transform (NTT): $O(n \log n)$

NTT, the Butterfly, and MORE Large Integer Arithmetic

Pease NTT algorithm

Butterfly

- 1 modular addition
- 1 modular subtraction

1 modular multiplication

...on large integers

94004047165710635085568527505291103125901631844201943057313092767874706285240 68602693276977567248081577601725741713586280758645193178925688817930839047860 9379808522384091608522316677544231474881340610403421759418465284727313758623 +

65525918439829658246624729539876328135487491131558403797464863174607015547317 43381284540881218433654309837330127990183154118093973704318707508828045304379 2673804925408178942321482878940250871570578554594936513199511536795237760609 mod

 >90% runtime for FHEbased and ~30% for ZKPbased workloads

NTT, the Butterfly, and MORE Large Integer Arithmetic

Pease NTT algorithm

State-of-the-Art Approaches

Arbitrary precision libraries or programming languages

 GNU multiple precision (GMP) library, Python, Rust Specialized hardware support on application-specific integrated circuits (ASICs)

Performance

Generalizability

Cost

→ Multi-word Modular Arithmetic (MoMA)

Part I: Modular Arithmetic

Math (over \mathbb{Z}_a) Algorithm $c = \begin{cases} a+b-q, & \text{if } (a+b) > q, \\ a+b, & \text{otherwise.} \end{cases}$ $c = a + b \mod q$ $c = \begin{cases} a - b + q, & \text{if } a < b, \\ a - b, & \text{otherwise.} \end{cases}$ $c = a - b \mod q$ $c = ab - |ab| 2^{k}/q|/2^{k} |q, \mu = \lfloor 2^{k}/q \rfloor$ c = ab $\mod q$ **Barrett reduction**

Part II: Multi-digit Arithmetic

Multi-digit representation $[x_0, x_1, ..., x_{n-1}]_z = x_0 z^{n-1} + x_1 z^{n-2} + ... + x_{n-1} = x$

 $[8,9]_{10} = 8 \cdot 10 + 9 = 89$

 $\begin{array}{l} [1152921504606846975,\!18446744073709550897]_{2^{64}} \\ = 21267647932558653966460912964485512497 \end{array}$

Modular addition algorithm $c = \begin{cases} a + b - q, & \text{if } (a + b) > q, \\ a + b, & \text{otherwise.} \end{cases}$ $a = [a_0, a_1]_z = a_0 z + a_1 \\ b = [b_0, b_1]_z = b_0 z + b_1 \end{cases}$ $(2) (3) Double-Word modular addition (0, x) = a_0 + b_0 + \delta, (0, x) = a_0 + b_0$

Multi-word Modular Arithmetic via Recursion

• Let the input bit-width be λ

For each operation, apply **double-word modular arithmetic** to break it down to computations with bit-width $\lambda/2$

• Repeat until every resulting data type has bit-width $\lambda/2^k \leq \omega_0$

• ω_0 is the machine word width

How to implement this?

Code Generation for MoMA: Rewriting on Data Types

$a^{2\omega}$	\rightarrow	$[a_0^\omega,a_1^\omega]$	(19)
$c_0^{\omega} = \lfloor [a_0^{\omega}, a_1^{\omega}]/2^{\omega} \rfloor$	\rightarrow	$c_0^\omega = a_0^\omega$	(20)
$c_0^{\omega} = [a_0^{\omega}, a_1^{\omega}] \bmod 2^{\omega}$	\rightarrow	$c_0^\omega = a_1^\omega$	(21)
$[c_0^1, c_1^{\omega}, c_2^{\omega}] = [a_0^{\omega}, a_1^{\omega}] + [b_0^{\omega}, b_1^{\omega}]$	\rightarrow	$[\delta_0^1, c_2^{\omega}] = a_1^{\omega} + b_1^{\omega}, \ [c_0^1, c_1^{\omega}] = \delta_0^1 + a_0^{\omega} + b_0^{\omega}$	(22)
$[c_0^1,c_1^\omega] = a_1^\omega + b_1^\omega$	\rightarrow	$c_0^1 = \lfloor (a_1^{\omega} + b_1^{\omega})/2^{\omega} \rfloor, \ c_1^{\omega} = (a_1^{\omega} + b_1^{\omega}) \bmod 2^{\omega}$	(23)
$[c_0^{\omega}, c_1^{\omega}] = [a_0^1, a_1^{\omega}, a_2^{\omega}] \mod [q_0^{\omega}, q_1^{\omega}]$	\rightarrow	$\delta_0^1 = [q_0^{\omega}, q_1^{\omega}] < [a_1^{\omega}, a_2^{\omega}],$	
		$\delta_1^1 = (0 < a_0^1) \lor ((a_0^1 =_? 0) \land \delta_0^1),$	
		$[b_0^{\omega}, b_1^{\omega}] = [a_1^{\omega}, a_2^{\omega}] - [q_0^{\omega}, q_1^{\omega}],$	(24)
		$[c_0^{\omega}, c_1^{\omega}] = \begin{cases} [b_0^{\omega}, b_1^{\omega}], & \text{if } \delta_1^1 = 1, \\ [a_1^{\omega}, a_2^{\omega}], & \text{otherwise} \end{cases}$	
$[c_0^{\omega}, c_1^{\omega}] = [a_0^{\omega}, a_1^{\omega}] - [b_0^{\omega}, b_1^{\omega}]$	\rightarrow	$c_1^{\omega} = a_1^{\omega} - b_1^{\omega}, \ \delta_0^1 = a_1^{\omega} < b_1^{\omega}, \ c_0^{\omega} = a_0^{\omega} - b_0^{\omega} - \delta_0^1$	(25)
$\delta_0^1 = [a_0^\omega, a_1^\omega] < [b_0^\omega, b_1^\omega]$	\rightarrow	$\delta_0^1 = (a_0^{\omega} < b_0^{\omega}) \lor \left((a_0^{\omega} = b_0^{\omega}) \land (a_1^{\omega} < b_1^{\omega}) \right)$	(26)
$\delta_0^1 = [a_0^{\omega}, a_1^{\omega}] =_? [b_0^{\omega}, b_1^{\omega}]$	\rightarrow	$(a_0^\omega={}_?b_0^\omega)\wedge(a_1^\omega={}_?b_1^\omega)$	(27)
$[c_0^{\omega}, c_1^{\omega}, c_2^{\omega}, c_3^{\omega}] = [a_0^{\omega}, a_1^{\omega}] \cdot [b_0^{\omega}, b_1^{\omega}]$	\rightarrow	$[d_0^{\omega}, d_1^{\omega}] = a_1^{\omega} \cdot b_1^{\omega}, \ [e_0^{\omega}, e_1^{\omega}] = a_0^{\omega} \cdot b_0^{\omega},$	
		$[f_0^{\omega}, f_1^{\omega}] = a_0^{\omega} \cdot b_1^{\omega}, \ [g_0^{\omega}, g_1^{\omega}] = a_1^{\omega} \cdot b_0^{\omega},$	
		$[h_{0}^{1}, h_{1}^{\omega}, h_{2}^{\omega}] = [f_{0}^{\omega}, f_{1}^{\omega}] + [g_{0}^{\omega}, g_{1}^{\omega}],$	(28)
		$[c_0^{\omega}, c_1^{\omega}, c_2^{\omega}, c_3^{\omega}] = [e_0^{\omega}, e_1^{\omega}, d_0^{\omega}, d_1^{\omega}] + [h_0^1, h_1^{\omega}, h_2^{\omega}, 0]$	
$[c_0^{\omega}, c_1^{\omega}, c_2^{\omega}, c_3^{\omega}] = [a_{0-3}^{\omega}] + [b_{0-3}^{\omega}]$	\rightarrow	$[\delta_0^1, c_3^{\omega}] = a_3^{\omega} + b_3^{\omega}, \ [\delta_1^1, c_2^{\omega}] = a_2^{\omega} + b_2^{\omega} + \delta_0^1,$	()
		$[\delta_{2}^{1}, c_{1}^{\omega}] = a_{1}^{\omega} + b_{1}^{\omega} + \delta_{1}^{1}, \ [0, c_{0}^{\omega}] = a_{0}^{\omega} + b_{0}^{\omega} + \delta_{2}^{1}$	(29)

MoMA core rewrite rules ($[x_0, x_1, ..., x_{k-1}]_{2^{\omega_0}} = [x_0^{\omega_0}, x_1^{\omega_0}, ..., x_{k-1}^{\omega_0}]$)

Code Generation for MoMA: Rewriting on Data Types

MoMA core rewrite rules ($[x_0, x_1, ..., x_{k-1}]_{2^{\omega_0}} = [x_0^{\omega_0}, x_1^{\omega_0}, ..., x_{k-1}^{\omega_0}]$)

Example: Rewriting Modular Addition

Double-Abstract-Word Modular Addition

$$c^{2\omega} = (a^{2\omega} + b^{2\omega}) \mod q^{2\omega}$$

Applying rule (19) – (26)

$$\begin{split} [\delta_0^1, d_2^{\omega}] &= a_1^{\omega} + b_1^{\omega}, \\ [d_0^1, d_1^{\omega}] &= \delta_0^1 + a_0^{\omega} + b_0^{\omega}, \\ \delta_0^1 &= (q_0^{\omega} < d_1^{\omega}) \lor \left((q_0^{\omega} = d_1^{\omega}) \land (q_1^{\omega} < d_2^{\omega}) \right), \\ \delta_1^1 &= (0 < d_0^1) \lor \left((d_0^1 = 0) \land \delta_0^1 \right), \\ f_1^{\omega} &= d_2^{\omega} - q_2^{\omega}, \delta_0^1 = d_2^{\omega} < q_2^{\omega}, f_0^{\omega} = d_1^{\omega} - q_1^{\omega} - \delta_0^1, \\ [c_0^{\omega}, c_1^{\omega}] &= \begin{cases} [f_0^{\omega}, f_1^{\omega}], & \text{if } \delta_1^1 = 1, \\ [d_1^{\omega}, d_2^{\omega}], & \text{otherwise.} \end{cases} \end{split}$$

Double-Machine-Word Modular Addition

// addition: guad = double + double **void** dadd(i64 *c0, i64 *c1, i64 *c2, i64 *c3, i64 a0, i64 a1, i64 b0, i64 b1) { 3 i128 s; int cr; s = (i128) a1 + (i128) b1; 4 *c3 = (i64) s; cr = s >> 64;5 s = (i128) a0 + (i128) b0 + (i128) cr;6 *c2 = (i64) s; *c1 = s >> 64; *c0 = 0;7 8 // subtraction 9 **void** _dsub(i64 *c0, i64 *c1, i64 a0, i64 a1, 10 i64 b0, i64 b1) { 11 **int** br; *c1 = a1 - b1; br = a1 < b1; 12 *c0 = a0 - b0 - br;} 13 14 // less than 15 **void** _dlt(**int** *c, i64 a0, i64 a1, i64 b0, i64 b1) { 16 **int** i0, i1, i2, i3; i0 = (a0 < b0); 17 i1 = (a0 == b0); i2 = (a1 < b1);18 $i3 = i1 \&\& i2: *c = i0 || i3: \}$ 19 20 21 // modular addition void _daddmod(i64 *c0, i64 *c1, i64 a0, i64 a1, 22 i64 b0, i64 b1, i64 q0, i64 q1) { 23 i64 t0, t1, t2, t3, t4, t5; int i; 24 _dadd(&t0, &t1, &t2, &t3, a0, a1, b0, b1); 25 _dlt(&i, q0, q1, t2, t3); 26 _dsub(&t4, &t5, t2, t3, q0, q1); 27 *c0 = i ? t4 : t2; *c1 = i ? t5 : t3; } 28

Optimization for Non-power-Of-Two Input Bit-Widths

$$x = \left[0, \dots, 0, x_0^{\omega_0}, x_1^{\omega_0}, \dots, x_{k-1}^{\omega_0}\right]$$

For each operation, apply **double-word modular arithmetic** to break it down to computations with bit-width $\lambda/2$

Apply copy propagation, dead code elimination, strength reduction, etc.

$$[c_{0}^{\omega}, c_{1}^{\omega}, c_{2}^{\omega}, c_{3}^{\omega}] = [0, a_{1}^{\omega}] \cdot [b_{0}^{\omega}, b_{1}^{\omega}] \rightarrow [d_{0}^{\omega}, d_{1}^{\omega}] = a_{1}^{\omega} \cdot b_{1}^{\omega}, [e_{0}^{\omega}, e_{1}^{\omega}] = a_{0}^{\omega} \cdot b_{0}^{\omega},$$

$$[f_{0}^{\omega}, f_{1}^{\omega}] = a_{0}^{\omega} \cdot b_{1}^{\omega}, [g_{0}^{\omega}, g_{1}^{\omega}] = a_{1}^{\omega} \cdot b_{0}^{\omega},$$

$$[h_{0}^{1}, h_{1}^{\omega}, h_{2}^{\omega}] = [f_{0}^{\omega}, f_{1}^{\omega}] + [g_{0}^{\omega}, g_{1}^{\omega}],$$

$$[c_{0}^{\omega}, c_{1}^{\omega}, c_{2}^{\omega}, c_{3}^{\omega}] = [e_{0}^{\omega}, e_{1}^{\omega}, d_{0}^{\omega}, d_{1}^{\omega}] + [h_{0}^{1}, h_{1}^{\omega}, h_{2}^{\omega}, 0]$$

$$(28)$$

Implementing MoMA in Software/Hau

Software/Hardware Generation for Performance

Software/Hardware Generation for Performance

Carnegie Mellon

SPIRAL 8.5.0: Available Under Open Source

- Open Source SPIRAL available
 - non-viral license (BSD)
 - Initial version, effort ongoing to open source whole system
 - Commercial support via SpiralGen, Inc.

Developed over 20 years

- Funding: DARPA (OPAL, DESA, HACMS, PERFECT, BRASS, PAPPA), NSF, ONR, DoD HPC, JPL, DOE (ECP, XStack, SciDAC),
- SRC, CMU SEI, Intel, VMWare, Nvidia, Mercury
- Open sourced under DARPA PERFECT

www.spiral.net

F. Franchetti, T. M. Low, D. T. Popovici, R. M. Veras, D. G. Spampinato, J. R. Johnson, M. Püschel, J. C. Hoe, J. M. F. Moura: <u>SPIRAL: Extreme Performance Portability</u>, Proceedings of the IEEE, Vol. 106, No. 11, 2018. Special Issue on <u>From High Level Specification to High Performance Code</u>

Slide borrowed from Franz Franchetti

SPIRAL-Generated MoMA-Based NTT

* This code was generated by Spiral 8.5.1, www.spiral.net */

.,

/*

#include <stdint.h>
 __device__ uint64_t P2[1048576];
 __device__ uint64_t P1[1048576];

__device__ void MPMulQDD_L3(uint64_t &t6747, uint64_t &t6748, uint64_t &t6745, uint64_t

int a25235, a25237, a25238, a25248, a25250, a25251, a25256, a25279, a25281, a25282, a25292, a25294, a25295, a25300, a25323, a25325, a25326, a25336, a25338, a25339, a25344, a25367, a25369, a25370, a25380, a25382, a25383, a25388, a25395, a25397, a25398, a25403, a25405, a25406, a25411, a25412, a25413, a25414, a25415, a25416, a25417, a25421, a25423, a25424, a25429, a25430, a25431, a25436, a25438, a25439, a25444, a25445, a25446, a25447, a25448, a25449, a25450, a25451, a25452, a25453, c578, c579, c580, c581, c582, c583, c584, c585, c586, c587, c588, c589, c590, c591, c592, c593, c594, c595, c596, c597, c598, c599, c600, c601, c602, c604, c605, c606, c607, c608, c609, c610, c611, c612, c613, c614, c615, c616, c617, c618, c619, c620, c621, c622, c623, c624, c625, c626, c627, c628, c630, c631, c632, c633, c634, c635, c636, c637, c638, c639, c640, c641, c642, c643, c644, c645, c646, c647, c648, c649, c650, c651, c652, c653, c654, c656, c657, c658, c659, c660, c661, c662, c663, c664, c665, c666, c667, c668, c669, c670, c671, c672, c673, c674, c675, c676, c677, c678, c679, c680, c682, c683, c684, c685, c686, c687, c688, c689, c690, c691, c692, c693, c694, c695, c696, c697, c698, c699, c700, c701, c702, c703, c704, c705, c706. c707. c709. c710:

uint64_t a25236, a25239, a25249, a25257, a25280, a25283, a25293, a25296, a25301, a25344, a25327, a25337, a25340, a25345, a25368, a25371, a25381, a25384, a25389, a25396, a25399, a25444, a25407, a25422, a25425, a25437, a25440, t8241, t8242, t8243, t8244, t8245, t8246, t8247, t8248, t8249, t8250, t8251, t8252, t8253, t8254, t8254, t8256, t8257, t8258, t8259, t8260, t8261, t8262, t8263, t8264, t8265, t8266, t8267, t8268, t8269, t8270, t8271, t8272, t8273, t8274, t8276, t8276,

. . .

uint128_t s1955, s1956, s1957, s1958, s1959, s1960, s1961, s1962, s1963, s1964, s1965, s1966, s1967, s1968, s1969, s1970, s1971, s1972, s1973, s1974, s1975, s1976, s1977, s1978, s1979; for(int i15 = 0; i15 <= 63; i15++) {</pre> $a27652 = (128 \times i15);$ a27653 = (a27652 + threadIdx.x); b1376 = (threadIdx.x + a27652);a27654 = (b1376 + 8192);a27655 = (a27654 % 128); a27656 = (128 + a27655);/* Begin of MPModMul 256 */ a27657 = (2*a27656); a27658 = (a27657 + 1);a27659 = (2*a27654); a27660 = (a27659 + 1);/* MPAssignDD 128 */ /* MPTvpeCastDI 64 */ a27661 = (2*a27657);a27662 = (a27661 + 1);/* MPAssianDD 64 */ a27663 = (2*a27662);t10011 = twiddles[a27663]; a27664 = (a27663 + 1): t10012 = twiddles[a27664]; /* MPAssianDD 128 */ a27665 = (2*a27658); /* MPAssignDD 64 */ a27666 = (2*a27665);t10013 = twiddles[a27666]; a27667 = (a27666 + 1);t10014 = twiddles[a27667]: a27668 = (a27665 + 1);/* MPAssignDD 64 */ a27669 = (2*a27668);t10015 = twiddles[a27669]; a27670 = (a27669 + 1);t10016 = twiddles[a27670]:

. . .

3

3

/* #FCondD 128 */
a29432 = (2*a29431);
/* #FCondD 64 +/
a29433 = (2*a29432);
f(a29433 = (2*a29432);
a29434 = (a29433 + 1);
f(a29434) = ((1497) ? (110794) : (d2111));
a29434 = (a29432 + 1);
/* #FCondD 64 +/
a29436 = (2*a29432);
f(a29436) = ((1497) ? (110791) : (d2107));
a29437 = (a29436 + 1);
f(a29436) = ((1497) ? (110791) : (d2107));
/* End of MPModSub 256 */

void nttmpcuda(uint64 t *Y, uint64 t *X, uint64 t modulus dim3 b68(128, 1, 1), b69(128, 1, 1), b70(128, 1, 1), b7 b76(128, 1, 1), b77(128, 1, 1), b78(128, 1, 1), b79(128 a11(2, 1, 1), a12(2, 1, 1), a13(2, 1, 1), a14(2, 1, 1), q6(2, 1, 1), q7(2, 1, 1), q8(2, 1, 1), q9(2, 1, 1); ker_code0<<<g1, b68>>>(X, Y, modulus, twiddles, mu); ker_code1<<<g2, b69>>>(X, Y, modulus, twiddles, mu); ker_code2<<<g3, b70>>>>(X, Y, modulus, twiddles, mu); ker_code3<<<g4, b71>>>>(X, Y, modulus, twiddles, mu); ker_code4<<<q5, b72>>>(X, Y, modulus, twiddles, mu); ker_code5<<<g6, b73>>>>(X, Y, modulus, twiddles, mu); ker code6<<<q7, b74>>>(X, Y, modulus, twiddles, mu); ker_code7<<<g8, b75>>>>(X, Y, modulus, twiddles, mu); ker_code8<<<g9, b76>>>>(X, Y, modulus, twiddles, mu); ker_code9<<<q10, b77>>>>(X, Y, modulus, twiddles, mu); ker_code10<<<g11, b78>>>(X, Y, modulus, twiddles, mu); ker code11<<<q12, b79>>>(X, Y, modulus, twiddles, mu); ker_code12<<<q13, b80>>>(X, Y, modulus, twiddles, mu); ker_code13<<<g14, b81>>>>(X, Y, modulus, twiddles, mu);

void destroy_nttmpcuda() {
 /* skip */
}

2¹⁴-point 384-bit CUDA NTT, >**15,000** lines of code omitted

Why GPU?

- Operations on large input bit-width become highly computationally intensive
 - Massive parallelism
 - High on-chip performance

		C.S.	
Model	H100	RTX 4090	V100
#Cores	16896	16384	5120
Max Freq.	1980 MHz	2595 MHz	1530 MHz
RAM Size	80 GB	24 GB	32 GB
Bus Type	HBM3	GDDR6X	HBM2
Toolkit	12.2	12.0	11.7

NVIDIA GPUs from different generations and price points

BLAS Operations Results

Performance of BLAS operations with various input bit-widths on CPU (GMP) and GPU (MoMA & GRNS)

NTT Results

Performance of NTT with various input bit-widths on CPUs, GPUs and ASICs

- Publicly available at github.com/naifeng/moma
- Reach me at naifengz@cmu.edu

