
Code Generation for Cryptographic Kernels using
Multi-word Modular Arithmetic on GPU
Naifeng Zhang, Franz Franchetti
Carnegie Mellon University

CGO 2025

Great Data Security Comes at a High Cost

2

Encrypted
Computation

Fully homomorphic encryption (FHE)

Prover Verifier

Zero-knowledge proofs (ZKPs)

Cost: Prohibitive computational overhead

Polynomial Operations with LARGE Integer Arithmetic

§ Polynomial addition over a finite field ℤ!: 𝑐" = 𝑎" + 𝑏" 	𝑚𝑜𝑑	𝑞

3

𝑎, + 𝑎-𝑥 + 𝑎.𝑥. +⋯+ 𝑎/𝑥/

𝑏, + 𝑏-𝑥 + 𝑏.𝑥. +⋯+ 𝑏/𝑥/+

𝑐, + 𝑐-𝑥 + 𝑐.𝑥. +⋯+ 𝑐/𝑥/

If 𝑞 has 768 bits

−⨀

Cryptographic Kernel I: BLAS(-Like) Operations

Polynomial addition
				𝑐" = 𝑎" + 𝑏" 	𝑚𝑜𝑑	𝑞

Polynomial subtraction

Point-wise polynomial
multiplication

4

Vector addition
 𝑐" = 𝑎" + 𝑏" 	𝑚𝑜𝑑	𝑞

Basic Linear Algebra Subprograms
(BLAS)

𝑎# + 𝑎$𝑥 + 𝑎%𝑥% +⋯+ 𝑎&𝑥&

[𝑎#, 𝑎$, 𝑎%, ⋯ , 𝑎&]⤷
[𝑐#, 𝑐$, 𝑐%, ⋯ , 𝑐&] =
[𝑎#, 𝑎$, 𝑎%, ⋯ , 𝑎&] + [𝑏#, 𝑏$, 𝑏%, ⋯ , 𝑏&]

(over ℤ!)

Vector subtraction

Point-wise vector multiplication

Cryptographic Kernel II: Number Theoretic Transform

§ Polynomial multiplication
§ Schoolbook multiplication takes 𝑂(𝑛!)

§ Number Theoretic Transform (NTT): 𝑂(𝑛 log 𝑛)

5

𝑎, + 𝑎-𝑥 + 𝑎.𝑥. +⋯+ 𝑎/𝑥/

𝑏, + 𝑏-𝑥 + 𝑏.𝑥. +⋯+ 𝑏/𝑥/×

𝑐, + 𝑐-𝑥 + 𝑐.𝑥. +⋯+ 𝑐/𝑥/Not obvious!

NTT, the Butterfly, and MORE Large Integer Arithmetic

§ Butterfly
1 modular addition
1 modular subtraction
1 modular multiplication

 …on large integers

§ >90% runtime for FHE-
based and ~30% for ZKP-
based workloads

6

Pease NTT algorithm

NTT, the Butterfly, and MORE Large Integer Arithmetic

§ Butterfly
1 modular addition
1 modular subtraction
1 modular multiplication

 …on large integers

§ >90% runtime for FHE-
based and ~30% for ZKP-
based workloads

7

Pease NTT algorithm

How to efficiently implement cryptographic kernels
that involve large integer arithmetic?

State-of-the-Art Approaches

Arbitrary precision
libraries or
programming
languages
§ GNU multiple precision

(GMP) library, Python,
Rust

8

Performance

Generalizability

Cost

Specialized hardware
support on
application-specific
integrated circuits
(ASICs)

➡ Multi-word Modular Arithmetic (MoMA)

Part I: Modular Arithmetic

9

Barrett reduction

Math Algorithm(over ℤ!)

Part II: Multi-digit Arithmetic
Multi-digit representation

8,9 "# = 8 ⋅ 10 + 9 = 89

1152921504606846975,18446744073709550897 !!"
= 21267647932558653966460912964485512497

Modular addition algorithm

10

Double-Digit modular addition
𝟐𝟔𝟒 (On x86-64 architectures)

Double-Word modular addition
❶ ❷ ❸

Multi-word Modular Arithmetic via Recursion

§ Let the input bit-width be 𝜆

§ For each operation, apply double-word modular arithmetic to break it down
to computations with bit-width 𝜆/2

§ Repeat until every resulting data type has bit-width 𝜆/2' ≤ 𝜔#
§ 𝜔# is the machine word width

11

↻

How to implement this?

Code Generation for MoMA: Rewriting on Data Types

12
MoMA core rewrite rules (𝑥!, 𝑥", … , 𝑥#$" %!" = 𝑥!

&" , 𝑥"
&" , … , 𝑥#$"

&")

Code Generation for MoMA: Rewriting on Data Types

13
MoMA core rewrite rules (𝑥!, 𝑥", … , 𝑥#$" %!" = 𝑥!

&" , 𝑥"
&" , … , 𝑥#$"

&")

Double-
Abstract-Word

Single-
Abstract-Word

Example: Rewriting Modular Addition

14

Applying rule (19) – (26)

Double-Abstract-Word Modular Addition Double-Machine-Word Modular Addition

Optimization for Non-power-Of-Two Input Bit-Widths

𝑥 = 0,… , 0, 𝑥#
(! , 𝑥$

(! , … , 𝑥')$
(!

§ For each operation, apply double-word modular arithmetic to break it down
to computations with bit-width 𝜆/2
§ Apply copy propagation, dead code elimination, strength reduction, etc.

15

↻
0,

Implementing MoMA in

16
Slide borrowed from Franz Franchetti

SPIRAL-Generated MoMA-Based NTT

17

214-point 384-bit CUDA NTT, >15,000 lines of code omitted

… …

Why GPU?

§ Operations on large input bit-width become highly computationally intensive
§ Massive parallelism
§ High on-chip performance

18

NVIDIA GPUs from different generations and price points

BLAS Operations Results

19

Performance of BLAS operations with various input bit-widths
on CPU (GMP) and GPU (MoMA & GRNS)

NTT Results

20

Performance of NTT with various input bit-widths on CPUs, GPUs and ASICs

21

A dual focus on generalizability and performance

Good Luck!

§ Publicly available at github.com/naifeng/moma
§ Reach me at naifengz@cmu.edu

22

