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1 Introduction
Fully Homomorphic Encryption (FHE) serves as a crypto-
graphic approach that allows cloud platforms to manipulate
encrypted data. Yet, a significant amount of computing power
and time is required by FHE, where the bottleneck resides
in polynomial multiplication. Of various implementations
of polynomial multiplication, Number Theoretic Transform
(NTT) is a popular 𝑂 (𝑛 log𝑛) approach compared to the
naive 𝑂 (𝑛2) implementation, where 𝑛 is the maximum de-
gree among the polynomials. SPIRAL [5] is a code generation
system that takes in high-level mathematical abstractions
and synthesizes highly-optimized implementations, which
has outperformed domain experts across various platforms
and kernels, especially in the domain of linear transforms
such as the discrete Fourier transform (DFT). Leveraging
SPIRAL’s capability of autonomous code generation and
platform-based autotuning, we expand SPIRAL to the NTT
domain. As FHE requires large integers (e.g., 64-bit) for se-
curity, in this work, we focus on generating NTTs for multi-
word integer data types on GPU.

2 NTTX
Mirroring the structure of FFTW [8] and FFTX [7], the NTTX
package extends SPIRAL to generate NTT and batch NTTs
[13]. As shown in Listing 1, NTTX offers FFTW-style C/C++
API for FFTX-style code generation.

// C/C++ NTTX API example: compute a single NTT
#include "nttx.h"
nttx_plan *p;
p = nttx_plan_ntt(in, out, n, modulus, NTTX_FORWARD);
nttx_execute(p);
nttx_free(p);

Listing 1. NTTX C/C++ API.

Both the Korn-Lambiotte FFT algorithm [10] and the Pease
FFT algorithm [12] are included as breakdown rules in SPI-
RAL to support general radix NTTs and simple parallelism.
Using SPIRAL’s Operator Language (OL) [6], NTTs of size
𝑟𝑘 are represented as
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2.1 CUDA NTT
To take advantage of the massive parallelism enabled by
GPUs, we further expand the NTTX package to generate
CUDA code based on the prior GPU support in SPIRAL’s
FFTX package. Constrained by the shared memory size of
GPUs, the largest NTT for 64-bit integers that fits in one GPU
thread block is of size 2,048 (i.e., 2,048-point 64-bit NTT).
Since 2,048-point NTT has 1,024 butterflies in each stage,
and each thread block has 1,024 threads, we can perfectly
parallelize a single stage of NTT within one thread block. As
the dataflow of NTT is sequential across stages, we allocate
one thread block per NTT and compute batch NTTs using
multiple thread blocks.
Our implementation allows users to reuse 1,024 threads

in a single stage through loop-based code for each stage,
thereby generating NTTs of size larger than 2,048. However,
the performance of NTT degrades as the larger but slower
global memory is involved along with the shared memory.

2.2 Multi-Word Arithmetic
To support multi-word/precision (MP) integer arithmetic
for NTTs, we implement MP methods for three operations
that NTT contains, namely (i) add/sub, (ii) multiply, and (iii)
modulo, using native integer data types. For addition and
subtraction, multi-word carrying and borrowing are added to
the code generator. We employ the Karatsuba algorithm [9]
to reduce the multiplication of two 𝑛-digit numbers to three
multiplications of 𝑛/2-digit numbers. The Barrett reduction
[3] algorithm is applied to compute modulo faster using
multiplication, shifting, and subtraction than division. In
addition, we add new strength reduction rules to the SPIRAL
internal compiler to reduce redundant variables and code.
Combining CUDA NTT with multi-word integer arith-

metic, the SPIRAL NTTX package produces highly optimized
MP CUDA NTT code, as displayed in Listing 2.

3 Results
We benchmarked SPIRAL-generated batch NTTs’ perfor-
mance on Bridges-2 GPU nodes at Pittsburgh Supercomput-
ing Center [4], using one NVIDIA Tesla V100 SXM2 node
with 32GB GPU memory and compute capability 7.0. The
batch size is chosen as the maximum number of NTTs that
fills up the entire GPU memory. The runtime of a single
NTT is calculated as the overall kernel runtime (measured
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Table 1. Timings of a single SPIRAL-generated NTT on GPU and its comparison with other works.

Work Device 𝑛 Bit-Length NTT [𝜇𝑠]

[2] GTX Titan Black 1,024 24 2,160
2,048 2,060

[11] Tesla V100 2,048 55 12.5

This Work Tesla V100 1,024 60 0.24
2,048 0.56

// Kernel Code
__global__ void ker_code0(uint64_t *X, uint64_t *Y,

uint64_t modulus, uint64_t *twiddles, uint64_t mu) {
int a225, ...
uint64_t s133, ...
__shared__ uint64_t T1[2048];
__shared__ uint64_t T2[2048];
a225 = ((2048*blockIdx.x) + threadIdx.x);
s133 = X[a225];
s134 = _ModMulMP(twiddles[1], X[(a225 + 1024)], modulus, mu);
a226 = (2*threadIdx.x);
T2[a226] = _ModAddMP(s133, s134, modulus, mu);
T2[(a226 + 1)] = _ModSubMP(s133, s134, modulus, mu);
__syncthreads();
...
s153 = T1[threadIdx.x];
a245 = (threadIdx.x + 1024);
s154 = _ModMulMP(twiddles[(1024 + (a245 % 1024))],

T1[a245], modulus, mu);
a246 = ((2048*blockIdx.x) + (2*threadIdx.x));
Y[a246] = _ModAddMP(s153, s154, modulus, mu);
Y[(a246 + 1)] = _ModSubMP(s153, s154, modulus, mu);
__syncthreads();

}
// Host Code
void ntt2048mpcuda(uint64_t *Y, uint64_t *X,

uint64_t modulus, uint64_t *twiddles, uint64_t mu) {
dim3 b3(1024, 1, 1), g1(2, 1, 1);
ker_code0<<<g1, b3>>>(X, Y, modulus, twiddles, mu);

}

Listing 2. SPIRAL-generated radix-2 2,048-point MP CUDA
NTT code, with a batch size of 2.

by nvprof) of batch NTTs divided by the batch size. NTTs’
correctness is verified against OpenFHE [1] data.
To the best of our knowledge, there is limited work that

implements small-size NTTs for large integers on GPU. Ta-
ble 1 shows the performance comparison between SPIRAL-
generated NTTs and other works using integer data types
of different bit-lengths. Although operating on integers of
higher bit-lengths, SPIRAL-generatedMPCUDANTT achieves
a 3,679x speedup against [2] and a 22x speedup against [11].
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