
Towards High Performance, Portability, and
Productivity: Lightweight Augmented Neural

Networks for Performance Prediction

Ajitesh Srivastava∗§ Naifeng Zhang∗§ Rajgopal Kannan† and Viktor K. Prasanna∗
∗University of Southern California

{ajiteshs,naifengz,prasanna}@usc.edu
†US Army Research Lab-West

rajgopal.kannan.civ@mail.mil

Abstract—Writing high-performance code requires significant
expertise in the programming language, compiler optimizations,
and hardware knowledge. This often leads to poor productivity
and portability and is inconvenient for a non-programmer
domain-specialist such as a Physicist. More desirable is a
high-level language where the domain-specialist simply specifies
the workload in terms of high-level operations (e.g., matrix-
multiply(A, B)), and the compiler identifies the best implemen-
tation fully utilizing the heterogeneous platform. For creating a
compiler that supports productivity, portability, and performance
simultaneously, it is crucial to predict the performance of various
available implementations (variants) of the dominant operations
(kernels) contained in the workload on various hardware to
decide (a) which variant should be chosen for each kernel
in the workload, and (b) on which hardware resource the
variant should run. To enable the performance prediction, we
propose lightweight augmented neural networks for arbitrary
combinations of kernel-variant-hardware. A key innovation is
utilizing the mathematical complexity of the kernels as a feature
to achieve higher accuracy. These models are compact to reduce
training time and allow fast inference during compile-time and
run-time. Using models with less than 75 parameters, and only
250 training data instances, we are able to obtain accurate
performance predictions, significantly outperforming traditional
feed-forward neural networks on 48 kernel-variant-hardware
combinations. We further demonstrate that our variant-selection
approach can be used in Halide implementations to obtain up to
1.7x speedup over Halide auto-scheduler.

Index Terms—Lightweight augmented neural networks, Per-
formance prediction, Productivity, Portability, Compiler, Hetero-
geneous platforms

I. INTRODUCTION

With various heterogeneous technologies emerging today,

there have been unprecedented opportunities for accelerating

applications. Application-specific integrated circuits (ASICs)

[1] provide highly specialized implementations but require

expertise in implementation and are specialized for one appli-

cation. On the other hand, CPUs, GPUs, and FPGAs provide

more flexibility and are easier to program, but are much slower

compared to ASICs. Providing the flexibility in applications

and ease of implementation while reaching the speedup offered

§Equal contribution

by ASICs has been the focus of many recent works [2], [3].

However, even writing a CPU/GPU code to get the most out of

available hardware requires programming expertise, hardware

knowledge, and time. Further, that optimized code may not be

“portable”, i.e., working well on a different platform. Finally,

a domain-specialist such as a physicist is expected to know the

operations involved in their workload, but not the details of

their highly-optimized implementations. This is important for

“productivity”, i.e., implementing the desired workflow with

few lines of code, not worrying about the code optimizations.

With the objective of achieving high performance, porta-

bility, and productivity, we are building a compiler that exe-

cutes a high-level domain-specific language on heterogeneous

platforms aligned with recent DARPA projects [4]. The user

will write a high-level code that can be broken down into

high-level operations (matrix multiplication, convolution, etc.)

which we call kernels. The user only specifies the operation

with the inputs such as matrix-multiply(A, B) without

worrying about the optimized implementation of the actual

multiplication, thus enabling high productivity. It is the com-

piler’s job to automatically identify how to best execute this

code by distributing the kernels among the available hardware

configurations on the platform.

In order to identify a high performance execution plan,

the compiler should be able to predict the performance of

a kernel on various hardware resources. This enables the

following decisions: (i) Variant-Selection: A compiler may

have several variants in its library implementing the kernel

on the same hardware with potentially different performances,

e.g., Boost library vs Eigen library for matrix multiplication.

The variation may also come from setting certain parame-

ters in the implementation that affect the runtimes, such as

compilation flags and other tunable parameters of the imple-

mentation. Given the input, which variant should be selected?

(ii) Mapping to hardware: The workload is a collection of

possibly interdependent kernels. Each kernel can be mapped

to various available hardware resources (CPUs, GPUs, etc.).

For each kernel-hardware pair, there may be a different kernel

variant that is optimal. Having accurate kernel performance

20
20

 IE
EE

 2
7t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 H
ig

h
Pe

rf
or

m
an

ce
 C

om
pu

tin
g,

 D
at

a,
 a

nd
 A

na
ly

tic
s (

Hi
PC

) |
 9

78
-1

-6
65

4-
22

92
-5

/2
0/

$3
1.

00
 ©

20
20

 IE
EE

 |
 D

O
I:

10
.1

10
9/

HI
PC

50
60

9.
20

20
.0

00
16

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 21,2023 at 20:14:40 UTC from IEEE Xplore. Restrictions apply.

models is crucial for these decisions. We acknowledge that

our approach to designing this compiler is not suited for

compiling arbitrary low-level code as we rely on already

available implementations of certain kernels. However, the

kernels chosen in the paper dominate the runtime of many

workflows including machine learning. In fact, our chosen

kernels cover >80% of the workflows [5] in the DARPA SDH

program [4], [6]. We emphasize that predicting the execution

time is more useful than simply knowing the better variant or

hardware resource for individual kernels. For instance, suppose

we want to execute two matrix multiplications that do not have

any data dependencies on a platform containing a CPU and

a GPU. The first one involves matrices of size 100 and the

second of size 10000. While the first multiplication alone may

be faster on GPU, it should still be scheduled on the CPU so

that the GPU is available for the second which is the larger

multiplication.
To enable portability, the compiler must support learning

performance models of execution times T (Ki, Hj) on arbi-

trary platforms, where Ki is an arbitrary kernel implemented

on an arbitrary hardware Hj . We do not assume any access

to hardware profilers or details of the kernel implementation.

The kernel implementations on various hardware are treated

as black-boxes and we can only manipulate the inputs to the

implementations. This makes our approach easily extensible

when a new implementation of a kernel is added to the library.

These performance models can be trained during compiler

installation by generating benchmark datasets for each kernel

(along with its variants) on the available hardware. To make

this feasible, the models must be lightweight so that they

can learn quickly with small training data without overfitting.

Once the models are trained, the compiler will be ready for

scheduling kernels at compile-time. The prediction may also

be needed at runtime since the exact input to the kernel may

not be known at compile-time, and therefore, the mapping

decisions (which variant to select and where to run) will

have to be made dynamically at runtime. Making the models

compact is necessary to ensure that they do not constitute

a significant portion of the runtime. We build performance

models for various ubiquitous kernels [4] found in com-

mon workflows including (i) Matrix-Matrix Multiplication,

(ii) Matrix-Vector Multiplication, (iii) Matrix Convolution, (iv)

Max-Pooling, (v) Blur filter, and (vi) FFT. We propose a novel

approach called Augmented Neural Network (NN+C) which

is extremely lightweight and utilizes the time complexity

function to perform execution time prediction.
Key Contributions: Our key contributions are as follows.

• We propose novel lightweight neural network models for

kernel performance prediction on CPUs and GPUs.

• We demonstrate that the lightweight models are portable

to more than 48 kernel-variant-hardware combinations.

Results from 48 combinations have been discussed, which

include 4 linear algebra kernels, each of which has 2

variants on each of 3 CPUs and 2 variants on each

of 2 GPUs. In addition, we also consider 8 Halide [7]

implementations covering Blur filter and FFT kernels on

various CPUs and GPUs. To the best of our knowledge,

no existing work has demonstrated one approach that is as

portable as ours working for a variety of implementations

(C++ Eigen, C++ Boost, CUDA, and Halide) on various

CPUs and GPUs.

• We demonstrate that our models achieve high accuracy

even with a small training set in a short amount of training

time outperforming traditional feed-forward networks for

all 48 kernel-variant-hardware combinations.

• We demonstrate that our performance models can be used

to identify the best implementation of a kernel where

thousands of variants exist with significantly different

runtimes. Specifically, for Halide implementation of Blur

filter, our approach results in up to 1.7× speed up over

Halide auto-scheduler.

II. RELATED WORK

Most existing works focus on predicting the performance

of the whole specific workload. Huang et. al. [8] use sparse

polynomial regression to predict the execution time of arbitrary

programs. In [9], a neural network is used to predict the

execution time of a workload. On the other hand, [10] proposes

feature selection from workloads to identify similar applica-

tions for which the runtimes are known and then predicting

the runtime for the given application using mean or linear

regression. These approaches are limited to one or similar

applications and will require retraining for every application,

and thus are not scalable. Further, it is not clear what type

of workloads will result in good predictions and whether a

similar approach can be ported to other hardware. Instead,

we perform predictions at coarse-level building blocks of

a program on various hardware. If a compiler can predict

performance at coarse-level operations (kernels such as matrix

multiplication) on available hardware, it can make mapping

decisions accordingly. For this, we consider four kernels that

are dominant in many other workloads. Therefore, instead of

being tied to a particular workflow, our approach applies to

many, such as the entire class of deep learning workloads.

Other existing works [11], [12] rely on the instruction set

architecture or hardware-specific metrics, which can poten-

tially be used to predict kernel (instead of workload) perfor-

mance. However, this would require explicit knowledge of the

hardware and corresponding profilers, and thus will reduce

portability. Our approach enables a black-box treatment of the

kernels and allows prediction without knowing the specific

architecture or implementation details. Table I summarizes

the works closest to ours. Although we do not compare our

approach against the above-mentioned works quantitatively,

as they are for different objectives, we do show comparison

against their chosen machine learning models (neural networks

and linear regression) and that our lightweight augmented

neural networks achieve superior accuracy. Finally, our work is

different from [13] as they focus on performance prediction of

hardware using hardware profiling instead of the performance

of dominant operations.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 21,2023 at 20:14:40 UTC from IEEE Xplore. Restrictions apply.

Table I: Distinction from related works

Approach Workload Coverage Portability
Workload-specific [8]–[10] Low N/A

ISA/Hardware specific [11], [12] High Low/Medium
Our work Medium High

III. PROPOSED APPROACH

Problem Definition: For each operation on an arbitrary

platform with arbitrary implementations, given corresponding

inputs, find a lightweight model that accurately predicts the

execution time using a small amount of training time.

To solve this problem, we propose the Augmented Neural

Network (NN+C). The key idea of NN+C is utilizing known

mathematical function f(K,H) as an extra input to NN.

For example, in Matrix-Matrix Multiplication (Am,n ×Bn,k),

besides using basic features such as matrix dimensions, matrix

density as inputs, we calculate the number of total operations

during Matrix-Matrix Multiplication. That is, f(K,H) =
m×n× k. f(K,H) for Matrix-Vector Multiplication, Matrix

Convolution, and Max-Pooling is also calculated similarly.

The lightweight aspect enables fast decision making during

compile-time as well as run-time. These augmented neural

networks provide the flexibility to incorporate any tunable

parameter available for the kernel and the hardware.

A. Neural Network Structure

The structure of NN+C is shown in Figure 1. Inputs to the

neural network are

1) known mathematical function f(K,H)
2) kernel parameters Ki, such as input matrix dimension

and matrix density

3) hardware/code-optimization parameters Hj , for exam-

ple, how many threads are used in the multi-threaded

implementation and other controllable features that may

affect the runtime such as compilation flags

Our augmented neural network contains at most two hidden

layers. The output layer has one node, which is the predicted

execution time. The number of nodes in hidden layers varies

given different kernels and different inputs, resulting in differ-

ent models for each kernel. Further, models for a given kernel

differ for CPU and GPU due to different inputs: in CPU we

use multi-threading and take the number of threads as input.

Thus, for example, for four kernels mentioned above and two

hardware configurations, this results in eight different neural

network structures. However, the structure of the models

remains the same irrespective of the implementation of the

kernel (e.g., different software libraries), and the type of CPU

or the type of GPU (e.g., Intel or AMD). In this case, only the

weights in the neural network that are learned during training

will change.

B. Model Inputs

a) Matrix-Matrix Multiplication(Am,n × Bn,k): Inputs

are the dimensions of the matrices m, n, and k, densities of

matrix A (d1 = number of non-zero entries
m×n) and of matrix B (d2),

...

...

...

f(K,H)

K1

Km

H1

Hn

O1

Input

layer

Hidden

layer(s)

Output

layer

Figure 1: Structure of Augmented Neural Network (NN+C)

and the number of threads we utilize during multi-threading

on CPU, Nthd, which is an extra input for operations on CPU

and not present for GPU. We augment the neural network

with c = f(K,H), which is approximately the total number

of operations in the kernels. In this case, c = m× n× k.

b) Matrix-Vector Multiplication (Am,n × Bn,1): Inputs

are m, n, d, c, Nthd as defined above. m and n are dimensions

of matrix A. d is the density of matrix A and the density of

vector B is set as 1. c is the number of operations, c = m×n.

Nthd is the number of threads.

c) Matrix Convolution(Am,n ∗Br,r): Inputs are m, n, d,

c, Nthd as defined above, and r is the dimension of square

matrix B. d is the density of matrix A and the density of square

matrix B is set as 1. The number of operations is given by

c = (m − r + 1) × (n − r + 1) × r2. Nthd is the number of

threads.

d) Max-Pooling (Am,n ∗ Bs,s): Inputs are m, n, d, c,
Nthd as defined above, and s is the dimension of square matrix

B. d is the density of matrix A and the density of square

matrix B is set as 1. The number of operations is given by

c =
⌈
n
s

⌉× ⌈
m
s

⌉× s2. Nthd is the number of threads.

IV. EXPERIMENTS

A. Platforms and Optimizations

To demonstrate portability of our models we conducted our

experiments on five platforms: Intel(R) Xeon(R) CPU E5-

2650 v2 @ 2.60GHz (Xeon), Intel(R) Core i7-8750H CPU

@ 2.20GHz (I7), Intel(R) Core i5-7360U CPU @ 2.30GHz

(I5), NVIDIA Tesla K40c (Tesla) and NVIDIA Quadro K420

(Quadro).

To perform the kernel operations on CPU, we used the

Eigen library and the Boost library in C++. Eigen/Dense,

Eigen/Sparse, uBLAS/matrix, and uBLAS/matrix sparse are

used to optimize dense and sparse matrix in each kernel.

Multi-threading was also used in Eigen to vary the number

of threads. However, it is difficult to vary the number of

threads without heavily changing the code structure in the

Boost library. Owing to our black-box approach, we used a

single thread in the Boost library. Among our platforms, Xeon

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 21,2023 at 20:14:40 UTC from IEEE Xplore. Restrictions apply.

has 16 cores, 32 threads; I7 has 12 cores, 24 threads; and I5 has

2 cores, 4 threads. For all operations on GPU, we used two

implementations of CUDA to optimize, one through global

memory and one through shared memory. This results in 10

implementations of each kernel: 2 variants on each of 3 CPUs

and 2 variants on each of 2 GPUs. We published our code for

reproduciblility1.

B. Datasets

We measured the performance of four kernels on each

platform: Matrix-Matrix Multiplication (MM), Matrix-Vector

Multiplication (MV), Matrix Convolution (MC) and Max-

Pooling (MP). Evaluations on Halide kernels (Blur filter and

FFT) are discussed in Section V in the context of selecting

the best variant for a given kernel. Discounting the Halide

kernels, for each kernel-variant-hardware combination (there

are 40 such combinations), we generated 500 instances of data,

where 250 instances were used to train the model and 250

instances to test. Each data instance was generated randomly

with ranges of parameters as described in Table II. While

the experiments may be conducted with a different set of

ranges, we chose these ranges as they are common sizes for

deep learning workflows. Since we use multi-threading on

CPU, all operations on CPU take an extra input Nthd, which

is randomly generated between 1 to the maximum threads

supported by the given platforms.

Table II: Parameters for data generation

Matrix-Matrix Multiplication
m,n, k ∈ {1, 2, 3, . . . , 1024}
d1 ∈ {1, 1

2
, 1
4
, . . . , 1

2log2 m×n }
d2 ∈ {1, 1

2
, 1
4
, . . . , 1

2log2 n×k }
Matrix-Vector Multiplication

m,n ∈ {1, 2, 3, . . . , 1024}
d ∈ { 1

2
, 1
4
, 1
8
, . . . , 1

2log2 m×n }

Matrix Convolution
r ∈ {3, 5, 7}

m,n ∈ {r, r + 1, r + 2, . . . , 1024}
d ∈ {1, 1

2
, 1
4
, . . . , 1

2log2 m×n }

Max-Pooling

r ∈ {2, 3, 4, 5}
s ∈ {1, 2}

m,n ∈ {r, r + 1, r + 2, . . . , 1024}
d ∈ {1, 1

2
, 1
4
, . . . , 1

2log2 m×n }

C. Models

Our augmented neural networks are built under the Tensor-

Flow framework. Each model is kept under 75 parameters to

maintain lightweight and a short training time. All models have

at most 3 dense layers and use ReLU as the activation function.

We use Adam as the optimizer [14], with learning rate varying

between 0.01, 0.0001, and 0.0001. The loss function is chosen

to be mean squared error. Each epoch included training with

a full batch. The number of parameters of each model as well

as its average training time is shown in Table III.

1https://github.com/Naifeng/Augmented-Neural-Network

Table III: Number of parameters and average training times

MM MV MC MP
CPU 64, 19s 50, 18s 73, 6s 73, 6s
GPU 41, 19s 73, 6s 50, 8s 73, 7s

D. Baselines

We compare our method against four baselines: (1) Neural

Network (NN). NN has the same implementation as NN+C

except that NN does not take the mathematical complexity

as an extra input. (2) Constant (C). In C, we only take

the mathematical complexity as input and predict execution

time using linear regression. (3) Augmented Linear Regression

(LR+C). We take the same inputs as NN+C but use linear

regression in LR+C. (4) Augmented Non-Linear Regression

(NLR+C). In NLR+C we take the same inputs as NN+C

but use the random forest regression [15]. Random forest

based regression has been demonstrated to be competitive in

performance prediction [16], [17].

E. Evaluation Metrics

We use mean absolute percentage error (MAPE) to evaluate

the predictions {t̂1, t̂1, . . . , t̂N} obtained by the baselines and

our models w.r.t. the ground truth {t1, t2, . . . , tN}:

MAPE =
100

N

∑

i

|ti − t̂i|
ti

. (1)

MAPE was used in many existing works on performance

prediction [8], [10]–[12]. By the definition of MAPE, a small

misprediction (|ti − t̂i|) might lead to a exceptionally high

MAPE (up to 5000%) if the true runtime ti is minute. Those

extreme MAPE values skew the average despite most of the

predictions being accurate. Thus, we introduce a threshold at

the 30% of the testing data, ranking from the lowest runtime

to the highest runtime. Overall, the average runtime of testing

data below the threshold is 13% of the average runtime of all

the testing data, but these low runtime data instances contribute

approximately 80% of the overall MAPE. For example, when

analyzing NN+C’s performance on MC on GPU, MAPE given

by the data instances below the threshold is 128% and the

MAPE given by the data instances above the threshold is 15%,

whereas the overall MAPE is 49%. Therefore, in reporting

MAPE, we drop 30% of testing data with the lowest runtime

for a more precise assessment of models’ performance.

V. DEMONSTRATION OF VARIANT-SELECTION

As a crucial application of our performance prediction

approach, we demonstrate that it can be used to pick the best

variant for a given kernel, i.e., picking the best available code

among several options. Possible scenarios include choosing

between a CPU and a GPU implementation and identifying

compilation flags that will be best suited for the kernel.

To show the variant selection capability of our approach,

we choose a scenario where the number of variants can be

extremely high. Further, we choose two kernels different than

the four discussed thus far to show the generalizability of our

approach.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 21,2023 at 20:14:40 UTC from IEEE Xplore. Restrictions apply.

We consider the Blur filter (Blur) kernel and Fast Fourier

transform (FFT) kernel implemented in Halide [7]. A Halide

code decouples the functional program from its execution

“schedule” that determines various aspects of the execution

such as the ordering of the loops, degree of unrolling loops,

and vectorization strategy. The schedule description can be

considered as a combination of shape (feature space) and

parameters. For instance,

blur_y.tile(x, y, xi, yi, 128, 256)

defines two dimensions of the shape and the parameters 128

and 256 are the tunable parameters along these dimensions.

Changing the schedule does not affect the output of the code,

but it may significantly affect the runtime. Therefore, each

schedule generates a variant of the same kernel, and our task

is to identify the best variant to use.

A. Model Inputs

We train our compact augmented neural networks with

inputs representing the schedule features. This allows us to

quickly estimate runtimes of the code with various schedule

parameters without actually executing the code. Halide pro-

vides an auto-scheduler (Mullapudi2016 [18]) that attempts

to identify the best schedule itself. (At the time of writing,

the newest Halide auto-scheduler (Adams2019 [19]) has not

been included in the stable release [20]) We run the auto-

scheduler to identify the shape/feature space and ignore the

suggested parameters. Within this feature space we generate

candidate schedules S = {s1, s2, s3, . . . , sN}, where each si
is a vector of parameters, and find s = argmini P(si), where

P(si) represents the predicted runtime given by schedule si.
For kernels that Halide auto-scheduler are not applicable to,

we identify the feature space based on the provided manually

written implementation.

Input data dimensions n and augmented constant are also

fed into the neural network. We augment n2 for Blur and

n log2 n for FFT to corresponding variant-selection models

given the complexity of Halide implementation of both kernels

[21].

B. Platforms and Optimizations

We conducted variant-selection experiments on five plat-

forms: Xeon, I7, I5, Tesla, and Quadro. We used Halide to

implement the kernel operations. More experiment settings of

variant-selection can be found within our published code2.

C. Datasets

We evaluated two kernels: Blur and FFT. The performance

of Blur is measured on five platforms. Given that there is no

existing GPU schedule of FFT provided by Halide, we only

conducted experiments of FFT on three CPU platforms. To

demonstrate that our models are able to identify the best im-

plementation among numerous existing variants, we generated

thousands of data instances and restricted the training set to

consist of 250 instances to maintain portability.

2https://github.com/Naifeng/Variant-Selection

The following is a piece of code from the implementation

of Halide Blur on CPU. Each of s1, s2, s3 and s4 resides in

a .split() function and serves as a split factor. The inner

loop runs from zero to the split factor and the outer loop

runs from zero to the extent required by the first argument

divided by the split factor [7]. Thus, a combination of {s1, s2,

s3, s4} defines a candidate schedule and different schedules

have significantly different runtimes. We varied each parameter

extensively to generate a candidate set. The schedule given by

Halide auto-scheduler is {8, 256, 128, 8}.

{
Var x = b l u r x . a r g s () [0] ;
b l u r x

. compu te a t (b lu r y , x o)

. s p l i t (x , x vo , x vi , s1)

. v e c t o r i z e (x v i) ;
}
{

Var x = b l u r y . a r g s () [0] ;
Var y = b l u r y . a r g s () [1] ;
b l u r y

. c o m p u t e r o o t ()

. s p l i t (x , x o , x i , s2)

. s p l i t (y , y o , y i , s3)

. r e o r d e r (x i , y i , x o , y o)

. s p l i t (x i , x i vo , x i v i , s4)

. v e c t o r i z e (x i v i)

. p a r a l l e l (y o)

. p a r a l l e l (x o) ;
}

According to Halide implementation rules and current sup-

ports (e.g., Halide only supports limited input dimensions for

FFT), we varied parameters as described in Table IV. For Blur

and FFT on CPU, we generated 1000 data instances for each

input data dimension, resulting in 6000 instances and 4000

instances, respectively. For Blur on GPU, we exhaustively

generated all possible combinations, that is, 1176 instances.

Table IV: Parameters for data generation

Blur (CPU)

n ∈ {210, 211, 212, . . . , 215}
s1, s2 ∈ {2, 4, 8, . . . , 1024}

s3 ∈ {2, 4, 8, . . . , s2}
s4 ∈ {2, 4, 8, . . . , s3}

Blur (GPU)
n ∈ {210, 211, 212, . . . , 215}

s1 ∈ {2, 4, 8, 16}
s2, s3 ∈ {1, 2, 4, . . . , 64}

FFT (CPU)
n ∈ {24, 25, 26, 27}

s1 ∈ {2, 4, 8, . . . , 2n−1}
s2, s3, s4, s5, s6 ∈ {2, 4, 8, . . . , 2n}

D. Models
Augmented neural networks used for variant-selection is

the same as models described in Section IV-C except that all

models used for variant-selection have exact 3 dense layers.

The number of parameters of each model as well as its average

training time is shown in Table V.

Table V: Number of parameters and average training times

Blur FFT
CPU 71, 18s 67, 12s
GPU 66, 7s N/A

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 21,2023 at 20:14:40 UTC from IEEE Xplore. Restrictions apply.

Figure 2: Performance predictions of four kernels using NN+C

E. Baselines

We compare our method against four baselines identical to

baselines described in Section IV-D: (1) NN, (2) C, (3) LR+C,

and (4) NLR+C. In addition, for Blur on CPU, we compare

our variant-selection approach with the Halide auto-scheduler

to show the overall improvement. For Blur on GPU, due to

the fact that Halide does not have a stable auto-scheduler to

generate a GPU schedule, we compare our variant-selection

results with the average runtime among the runtime of all

candidate schedules. Similarly, since current Halide auto-

scheduler is not capable of scheduling a complicated pipeline

such as FFT, we compare our results with the average runtime

as well as the minimum runtime among the runtime of all

candidate schedules for FFT on CPU.

F. Evaluation Metrics

We use MAPE and Spearman’s rank correlation coeffi-

cient (ρ) to evaluate the predictions {t̂1, t̂1, . . . , t̂N} obtained

by the baselines and our models w.r.t. the ground truth

{t1, t2, . . . , tN}. MAPE is defined in Equation (1). ρ is defined

as

ρ = 1− 6
∑N

i=1 d
2
i

N (N2 − 1)
(2)

where di = | rank(ti) − rank(t̂i)|. rank(ti) is the rank of

ti among {t1, t2, . . . , tN}, ranking from the lowest value

to the highest value. rank(t̂i) is the rank of t̂i among

{t̂1, t̂1, . . . , t̂N}, ranking from the lowest value to the highest

value. ρ ranges from −1 to 1. ρ of 1 indicates a perfect positive

correlation of two variables’ ranks and ρ of −1 indicates a

perfect negative correlation of two variables’ ranks. The closer

ρ is to zero, the weaker the correlation between the ranks.

VI. RESULTS

A. Kernel Performance Prediction

Figure 2 shows a visualization of using NN+C to predict

kernel performance on two platforms. We choose the results

of I5 and Tesla to represent the results on CPU and GPU,

respectively. We pick matrix dimension as x-axis, plotting

against execution time in seconds to visualize prediction. A

line joining two points in the plot indicates the corresponding

prediction and ground truth. Note that very few points have

a significant misprediction. Figure 3 shows the prediction

percentage error distributions across execution times using

NN+C and compares it against using NN. Similarly, we

choose the results of I5 and Tesla to represent the results on

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 21,2023 at 20:14:40 UTC from IEEE Xplore. Restrictions apply.

Figure 3: Percentage error distributions of four kernels using NN and NN+C

Table VI: Prediction MAPE of Matrix-Matrix Multiplication

CPU GPU
Eigen Boost CUDAGlobal Memory CUDAShared Memory

Xeon I7 I5 Xeon I7 I5 Tesla Quadro Tesla Quadro
NN+C 14% 23% 8% 7% 27% 6% 7% 5% 8% 8%

NN 29% 31% 26% 20% 35% 19% 23% 13% 18% 16%
C 39% 34% 28% 8% 34% 7% 9% 9% 10% 10%

LR+C 44% 31% 33% 8% 34% 7% 8% 8% 8% 8%
NLR+C 23% 24% 8% 9% 33% 7% 10% 10% 18% 19%

Table VII: Prediction MAPE of Matrix-Vector Multiplication

CPU GPU
Eigen Boost CUDAGlobal Memory CUDAShared Memory

Xeon I7 I5 Xeon I7 I5 Tesla Quadro Tesla Quadro
NN+C 21% 21% 25% 11% 8% 9% 7% 7% 7% 6%

NN 22% 24% 29% 14% 11% 12% 7% 8% 7% 9%
C 21% 22% 25% 12% 8% 9% 23% 23% 11% 10%

LR+C 21% 22% 26% 12% 8% 9% 7% 7% 7% 6%
NLR+C 26% 25% 27% 12% 8% 9% 29% 28% 21% 22%

CPU and GPU, respectively, and we discard data instance

whose absolute percentage error is beyond 100% in plotting.

We observe that the error of NN+C has a smaller spread

compared to that of NN. Data instances with a low execution

time is more likely to yield higher percentage error than data

instances with a high execution time. Tables VI, VII, VIII,

and IX quantify these results using MAPE.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 21,2023 at 20:14:40 UTC from IEEE Xplore. Restrictions apply.

Table VIII: Prediction MAPE of Matrix Convolution

CPU GPU
Eigen Boost CUDAGlobal Memory CUDAShared Memory

Xeon I7 I5 Xeon I7 I5 Tesla Quadro Tesla Quadro
NN+C 8% 21% 4% 30% 20% 13% 10% 15% 17% 19%

NN 9% 22% 7% 50% 30% 30% 16% 15% 22% 19%
C 27% 40% 22% 48% 44% 40% 30% 30% 42% 42%

LR+C 15% 32% 13% 46% 38% 37% 15% 15% 29% 30%
NLR+C 18% 32% 7% 30% 32% 24% 17% 17% 21% 21%

Table IX: Prediction MAPE of Max-Pooling

CPU GPU
Eigen Boost CUDAGlobal Memory CUDAShared Memory

Xeon I7 I5 Xeon I7 I5 Tesla Quadro Tesla Quadro
NN+C 23% 13% 14% 27% 12% 14% 14% 8% 25% 27%

NN 32% 20% 22% 36% 20% 34% 32% 32% 40% 47%
C 67% 37% 43% 81% 41% 47% 93% 95% 40% 28%

LR+C 50% 26% 27% 63% 31% 33% 75% 77% 40% 28%
NLR+C 25% 13% 17% 27% 13% 18% 14% 14% 31% 29%

For all five kernels using any implementation, NN+C pro-

duces the lowest MAPE in predictions. Ranking from the

highest accuracy (lowest MAPE) on average to the lowest is

(1) NN+C, (2) NLR+C, (3) NN, (4) LR+C, and (5) C. On

average, NN+C outperforms traditional NN by a margin of

8% and outperforms the second-best approach NLR+C by 5%.

LR+C has a good prediction for kernels on GPU. Performance

of C on all platforms is worst among all kernels expect MV.

Overall, NN+C predicts more accurately for kernels on GPU

than those on CPU, achieving on average a low MAPE of 12%

and 16%, respectively.

We report the aggregated average of MAPE for the four

kernels and the two hardware classes (CPU, GPU) in Table X.

For each kernel, MAPE was aggregated over all hardware and

variants. For each hardware class, MAPE was aggregate over

all the kernels, variants, and specific devices. We show the

comparison of NN+C against traditional NN. NN+C signifi-

cantly outperforms NN in almost all cases. In fact, for MM,

MAPE for NN+C is less than half of that of NN, suggesting

that the traditional neural network is far inferior than our

augmented neural network for some specific kernels.

Table X: Aggregated MAPE of NN+C vs. NN

MM MV MC MP CPU GPU
NN+C 11% 12% 16% 18% 16% 12%

NN 23% 14% 22% 32% 24% 20%

a) Unconstrained Augmented Neural Networks: To en-

able fast inference, our models are kept extremely lightweight

– less than 75 weights. Also, we only generate 500 data

instances for each kernel-variant-hardware combination, out

of which 250 are used to train our models. In order to

assess how much of the performance is compromised due

to these restrictions, we build similar NN+C models with

more parameters and generate a larger dataset with 5000

data instances (2500 instances are used to train and 2500

instances to test). Figure 4 illustrates the comparison between

lightweight models and unconstrained models in terms of error.

Overall, MAPE achieved by lightweight NN+C is 14% and

by unconstrained NN+C is 9%. Specifically, on CPU, using

unconstrained NN+C, MM, MV, MC, and MP have a decrease

on average MAPE of 5%, 2%, 8%, and 12%, respectively. On

GPU, using unconstrained NN+C, MM, MV, MC, and MP

have a decrease on average MAPE of 1.5%, 1%, 3%, and

2.5%, respectively. However, accuracy comes at the cost of

increased model size and the overall time as summarized in

Table XI.

Table XI: Preparing time increase and model size increase

MM MV MC MP
CPU 9.31x, 2.13x 2.30x, 2.12x 11.59x, 2.21x 10.24x, 2.48x
GPU 5.08x, 8.80x 7.07x, 2.34x 4.28x, 2.12x 3.35x, 2.62x

The preparing time (training data generation time plus

model training time) on average of lightweight NN+C on CPU

is 104s and that of unconstrained NN+C is 1040s, which is

10x of lightweight NN+C. The preparing time on average of

lightweight NN+C on GPU is 20s and that of unconstrained

NN+C is 97s, 4.85x of lightweight NN+C. With lightweight

NN+C, in addition to the preparing time loss, model size is

significantly reduced. Model size reduction is most evident in

MM on GPU. Comparing to unconstrained NN+C, lightweight

NN+C model is 8.80x smaller. The rest of the models are

downsized by 2.29x on average.
If the training and inference time is not constrained, then

one can use our unconstrained (larger and more accurate)

augmented models. However, we envision that lightweight

models may be necessary due to the following reasons: (a)

at compile-time many kernels need to be evaluated: consider

VGG16 inference that requires >1M 2D-Convolutions. At a

given layer, there can be >100K 2D-Convolutions, each of

which may have different execution times not only due to

heterogeneous hardware but also due to different sparsity. This

number of convolutions will multiply with the factor of the

number of parallel image classification pipelines. (b) Some

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 21,2023 at 20:14:40 UTC from IEEE Xplore. Restrictions apply.

0 500 1,000 1,500 2,000 2,500
0

5

10

15

20

25

Preparing Time (s)

M
A

P
E

(%
)

Xeon

I7

I5

Tesla

Quadro

MM

MV

MC

MP

Figure 4: Performance comparison between Lightweight Mod-

els and Unconstrained Models

decisions may have to be made at runtime: some kernels

may be only instantiated at runtime, which is the only time

performance prediction inference has to be performed. In such

scenarios, the inference time should be as minimal as possible

to avoid an significant impact on the total runtime.

B. Variant-Selection

Figure 5 shows the comparison of execution times for

varying input sizes of two kernels. Our predicted best schedule

(Prediction) produces a runtime close to the true best schedule

(Minimum) within the candidate set in all cases. Further,

Figure 5(a) shows that using our predictions, we were able to

outperform Halide auto-scheduler, getting up to 1.7× speedup

in kernel Blur on CPU. As for Blur on GPU, we obtained up

to 223.5× speedup compared to a randomly selected schedule

on a small input size (210), see Figure 5(b), and among all

input sizes, we were able to obtain a speedup of at least

1.24×. Shown in Figure 5(c), we obtained up to 1.5× speedup

compared to a randomly selected schedule of Halide FFT on

CPU.

Note that MAPE varies among different training processes

and train-test splits. The MAPE value shown in Table XII

is the best (lowest) MAPE obtained by our methods and

the baselines on the Halide kernels. The table also shows

the Spearman’s rank correlation coefficient. Since the main

objective is to select the best variant which requires the ability

to correctly rank the variants, this is the primary metric of

comparison. We observe that our approach NN+C obtains the

highest rank correlation in the majority of the cases. NLR+C

has a higher rank correlation for Halide Blur while having

much worse MAPE. On the other hand, for Halide FFT,

NLR+C obtains identical rank coefficients with NN+C and

better MAPEs. However, NLR+C has a much higher inference

time, and therefore likely to hinder the execution of the actual

application if used by the runtime component of a compiler,

Input Dimension

(a) Halide Blur (CPU)

E
x
ec

u
ti

o
n

T
im

e
(s

)
Input Dimension

(b) Halide Blur (GPU)
E

x
ec

u
ti

o
n

T
im

e
(s

)

Input Dimension

(c) Halide FFT (CPU)

E
x
ec

u
ti

o
n

T
im

e
(m

s)

Figure 5: Runtime comparison of variants obtained from

baseline and our approach

Inference Time (μs)

H
al

id
e

K
er

n
el

Figure 6: Inference time comparison of NN+C and NLR+C

as we argued in the end of Section VI-A. Figure 6 shows

the comparison of inference times between our lightweight

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 21,2023 at 20:14:40 UTC from IEEE Xplore. Restrictions apply.

Table XII: Prediction MAPE and Spearman’s coefficient

Halide Blur Halide FFT
CPU GPU CPU

Xeon I7 I5 Tesla Quadro Xeon I7 I5
NN+C 50%, 0.91 23%, 0.95 28%, 0.97 8%, 0.99 22%, 0.97 8%, 0.99 14%, 0.97 3%, 1

NN 72%, 0.87 25%, 0.94 40%, 0.91 12%, 0.98 29%, 0.94 11%, 0.98 19%, 0.95 17%, 0.95
C 1140%, 0.76 59%, 0.82 167%, 0.93 84%, 0.73 64%, 0.85 66%, 0.86 33%, 0.97 30%, 0.97

LR+C 1687%, 0.66 93%, 0.82 411%, 0.84 106%, 0.89 62%, 0.87 44%, 0.97 32%, 0.92 26%, 0.90
NLR+C 150%, 0.93 39%, 0.94 43%, 0.97 10%, 0.99 23%, 0.97 3%, 0.99 11%, 0.97 2%, 1

NN+C and NLR+C. It is noteworthy that the inference time

of NLR+C is more than 75× of that of our approach.

VII. CONCLUSION

We have proposed a novel lightweight augmented neural

network (NN+C), to predict kernel performance on CPUs

and GPUs. Our approach is designed in support of creating

compilers with high productivity, portability, and performance.

To show that our models are portable to different platforms

with different implementations, we have evaluated our model

on several CPUs and GPUs with multiple optimizations,

resulting in a total of 48 kernel-variant-hardware combina-

tions. To the best of our knowledge, no existing work has

demonstrated one approach that is as portable as ours working

for a variety of implementations (C++ Eigen, C++ Boost,

CUDA, and Halide) on various CPUs and GPUs. Our models

significantly outperformed the baselines including standard

neural network. We have shown that our approach can be used

to identify the best variants even when the number of variants

is extremely high, by demonstrating a 1.7× speedup over

Halide auto-scheduler. In future work, we will build prediction

models for other popular kernels. These models will be used

to perform optimized mapping of kernels in workflows for

various heterogeneous platforms.

ACKNOWLEDGEMENT

This work is supported by the Defense Advanced Research

Projects Agency (DARPA) under BAA number HR0011-20-9-

0019 and by the National Science Foundation Award number

1911229. Any opinions, findings, and conclusions or recom-

mendations expressed in this material are those of the authors

and do not necessarily reflect the views of the sponsors.

REFERENCES

[1] M. M. Vai, W. S. Song, and B. M. Tyrrell, “Application-specific inte-
grated circuits,” in High Performance Embedded Computing Handbook
(D. R. Martinez, R. A. Bond, and M. M. Vai, eds.), ch. 9, pp. 191–215,
A Systems Perspective, 2008.

[2] I. Kuon and J. Rose, Quantifying and Exploring the Gap Between FPGAs
and ASICs. Springer Publishing Company, Incorporated, 1st ed., 2009.

[3] B. Zahiri, “Structured asics: opportunities and challenges,” in Proceed-
ings 21st International Conference on Computer Design, pp. 404–409,
Oct 2003.

[4] “Software defined hardware (sdh).” https://www.darpa.mil/program/
software-defined-hardware.

[5] H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “Design and
implementation of knowledge base for runtime management of software
defined hardware,” in 2019 IEEE High Performance Extreme Computing
Conference (HPEC), pp. 1–7, 2019.

[6] “Darpa looks to propel parallelism.” https://www.hpcwire.com/2019/09/
04/darpa-looks-to-propel-parallelism/.

[7] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Ama-
rasinghe, “Halide: a language and compiler for optimizing parallelism,
locality, and recomputation in image processing pipelines,” Acm Sigplan
Notices, vol. 48, no. 6, pp. 519–530, 2013.

[8] L. Huang, J. Jia, B. Yu, B. gon Chun, P. Maniatis, and M. Naik, “Pre-
dicting execution time of computer programs using sparse polynomial
regression,” in Advances in Neural Information Processing Systems 23
(J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and
A. Culotta, eds.), pp. 883–891, Curran Associates, Inc., 2010.

[9] E. Ipek, B. R. De Supinski, M. Schulz, and S. A. McKee, “An approach
to performance prediction for parallel applications,” in European Con-
ference on Parallel Processing, pp. 196–205, Springer, 2005.

[10] W. Smith, I. Foster, and V. Taylor, “Predicting application run times
using historical information,” in Workshop on Job Scheduling Strategies
for Parallel Processing, pp. 122–142, Springer, 1998.

[11] C. Mendis, A. Renda, S. Amarasinghe, and M. Carbin, “Ithemal:
Accurate, portable and fast basic block throughput estimation using deep
neural networks,” arXiv preprint arXiv:1808.07412, 2018.

[12] E. Konstantinidis and Y. Cotronis, “A quantitative roofline model for
gpu kernel performance estimation using micro-benchmarks and hard-
ware metric profiling,” Journal of Parallel and Distributed Computing,
vol. 107, pp. 37–56, 2017.

[13] G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, and D. Chiou,
“Gpgpu performance and power estimation using machine learning,”
in 2015 IEEE 21st International Symposium on High Performance
Computer Architecture (HPCA), pp. 564–576, IEEE, 2015.

[14] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[15] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–
32, 2001.

[16] C. Dahinden and M. Ethz, “An improved random forests approach with
application to the performance prediction challenge datasets,” Hands-on
Pattern Recognition, Challenges in Machine Learning, vol. 1, pp. 223–
230, 2011.

[17] F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown, “Algorithm runtime
prediction: Methods & evaluation,” Artificial Intelligence, vol. 206,
pp. 79–111, 2014.

[18] R. T. Mullapudi, A. Adams, D. Sharlet, J. Ragan-Kelley, and K. Fa-
tahalian, “Automatically scheduling halide image processing pipelines,”
ACM Transactions on Graphics (TOG), vol. 35, no. 4, pp. 1–11, 2016.

[19] A. Adams, K. Ma, L. Anderson, R. Baghdadi, T.-M. Li, M. Gharbi,
B. Steiner, S. Johnson, K. Fatahalian, F. Durand, et al., “Learning
to optimize halide with tree search and random programs,” ACM
Transactions on Graphics (TOG), vol. 38, no. 4, pp. 1–12, 2019.

[20] Halide, “Release halide 10.0.0.” https://github.com/halide/Halide/
releases/tag/v10.0.0, Sep 2020.

[21] K. Li and P. Hudak, “Memory coherence in shared virtual memory
systems,” ACM Transactions on Computer Systems (TOCS), vol. 7, no. 4,
pp. 321–359, 1989.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 21,2023 at 20:14:40 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

