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ll. APPROACH: SCALAR & SIMD

Part |: Modular Arithmetic Part ll: Double-Word Arithmetic

Math (over Z,) Algorithm Double-word representation: X0, X1], = Xz +x; = x m
. Exampl
(a+b—q, if (a+b) > q,  —
c=a+b>b mod g c =4 . [8,9],,=8-10+9 = 89
a+b, otherwise.
[1152921504606846975,18446744073709550897] 64
r = 21267647932558653966460912964485512497
a—b+q, ifa<hb,
c=a-b  modgq C = | Part I: Modular addition algorithm Part II: Double-Word addition
a—b, otherwise.
a+b—-gq, it(a+b)>q, 10, c2]. = a1 + by,
¢ =
L a+b, otherwise. lco, 1]z = ap + by + 0,
¢c=ab mod g ¢c=ab - |abu/2" |q, where ¢ = [¢g, ¢1,¢2], and 6 € {0, 1}.

_ 1ok
=12"/ql \<>‘61= (a0, a1]; = apz + a4

Barrett reduction b = [by, bi], = boz + b,

Part lll: Single Instruction, Multiple Data

SIMD Double-Word addition

AVX2 | 64-bit

AVX-512

8-way

[ll. APPROACH: MULTI-WORD EXTENSION (MQX)

Instruction I: SIMD Addition with Carry Instruction Il: SIMD Subtraction with Borrow

~_m512i mm512 adc_epi6d(__m512i a,  m512i b, _ mmask8 ci, _ mmask8* co) __m512i mm512 sbb_epi64(_m512i a,  m512i b, _ mmask8 bi, _ mmask8* bo)

Instruction lll: SIMD Widening Multiplication

void mm512 mul epi64(_m512i* ch, ~ m512i* cl, _ m512i a, _ m512i b)

Per-lane 64-bit addition with carry-in and outputting both the addition result and Per-lane 64-bit subtraction with borrow-in and outputting the subtraction result

carry-out with borrow-out

Similar instructions Similar instructions

ISA Instruction ISA Instruction

x86 ADC x86 SBB

LRBni vadcpi LRBni vsbbpi

KNC ~ m512i mm512 adc_epi32 (__m512i v2, _ mmaskl6 k2, _ m512i KNG ~ _m512i mm512 sbb _epi32 (__m512i v2, _ mmaskl6 k,  m512i

v3, __mmasklée* k2 res) v3, _ _mmaskl6* borrow)

Per each SIMD lane, multiplying two 64-bit words and storing the high part of the
result in one 64-bit word and the low part in another

Similar instructions

ISA Instruction

x86 MUL

LRBni vmulhpi

KNC ~ m512i mm512 mulhi epi32 (__m512i a, _ m512i b)

AVX-512 ~ m512i mm512 mul epi32 (__m512i a, _ m512i b)

IV. RESULTS

Kernel I: BLAS Operations

Runtime per element [ns]

Kernel ll: Number Theoretic Transform
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MQX ENABLES CPUS TO APPROACH ASIC-LEVEL PERFORMANCE

Code available at github.com/naifeng/benchntt
Reach us at naifengz@cmu.edu




