Towards Closing the Performance Gap for Cryptographic Kernels

Between CPUs and Specialized Hardware

Naifeng Zhang Franz Franchetti

2,000-bit integer

29945058656012390289752201899548961002216938026898764670213921626494125002097316037309083423551230
90801402354741281525320130875756031797076046167772169925045685236286727961252942656722365196302071
16603324681021157993534366932467361582713800585917357036433047500540160547946659133404014756269446
50403492615533104586108008512036436642324307076750180870819991866737106993558380421464216659826172
30815293083164172838554002986172170145077240914636310277685115293248536940258787378968137743709119

Healthcare

S o 53496219555899915324743599705479002269036442663447672197590995176588031386455684062123400247497680

D

Encrypted
Computation

. L 58860138217379

O

Finance Residue Number

-
32-bit System (RNS)

Fully homomorphic encryption (FHE)

Artificial
Intelligence

64-bit

128-bit

Carnegie

Mellon

University

e

Arbitrary precision
libraries on CPUs

L OS

Specialized hardware
support on

Code generation-
based approach on

application-specific GPUs = GNU multiple precision
integrated circuits = Multi-word modular (GMP) library
(ASICs) arithmetic (MoMA) = OpenFHE MATHBACKEND

ll. APPROACH: SCALAR & SIMD

Part |: Modular Arithmetic Part ll: Double-Word Arithmetic

Math (over Z,) Algorithm Double-word representation: X0, X1], = Xz +x; = x m
. Exampl
(a+b—q, if (a+b) > q, —
c=a+b>b mod g c =4 . [8,9],,=8-10+9 = 89
a+b, otherwise.
[1152921504606846975,18446744073709550897] 64
r = 21267647932558653966460912964485512497
a—b+q, ifa<hb,
c=a-b modgq C = | Part I: Modular addition algorithm Part II: Double-Word addition
a—b, otherwise.
a+b—-gq, it(a+b)>q, 10, c2]. = a1 + by,
¢ =
L a+b, otherwise. lco, 1]z = ap + by + 0,
¢c=ab mod g ¢c=ab - |abu/2" |q, where ¢ = [¢g, ¢1,¢2], and 6 € {0, 1}.

_ 1ok
=12"/ql \<>‘61= (a0, a1]; = apz + a4

Barrett reduction b = [by, bi], = boz + b,

Part lll: Single Instruction, Multiple Data

SIMD Double-Word addition

AVX2 | 64-bit

AVX-512

8-way

[ll. APPROACH: MULTI-WORD EXTENSION (MQX)

Instruction I: SIMD Addition with Carry Instruction Il: SIMD Subtraction with Borrow

~_m512i mm512 adc_epi6d(__m512i a, m512i b, _ mmask8 ci, _ mmask8* co) __m512i mm512 sbb_epi64(_m512i a, m512i b, _ mmask8 bi, _ mmask8* bo)

Instruction lll: SIMD Widening Multiplication

void mm512 mul epi64(_m512i* ch, ~ m512i* cl, _ m512i a, _ m512i b)

Per-lane 64-bit addition with carry-in and outputting both the addition result and Per-lane 64-bit subtraction with borrow-in and outputting the subtraction result

carry-out with borrow-out

Similar instructions Similar instructions

ISA Instruction ISA Instruction

x86 ADC x86 SBB

LRBni vadcpi LRBni vsbbpi

KNC ~ m512i mm512 adc_epi32 (__m512i v2, _ mmaskl6 k2, _ m512i KNG ~ _m512i mm512 sbb _epi32 (__m512i v2, _ mmaskl6 k, m512i

v3, __mmasklée* k2 res) v3, _ _mmaskl6* borrow)

Per each SIMD lane, multiplying two 64-bit words and storing the high part of the
result in one 64-bit word and the low part in another

Similar instructions

ISA Instruction

x86 MUL

LRBni vmulhpi

KNC ~ m512i mm512 mulhi epi32 (__m512i a, _ m512i b)

AVX-512 ~ m512i mm512 mul epi32 (__m512i a, _ m512i b)

IV. RESULTS

Kernel I: BLAS Operations

Runtime per element [ns]

Kernel ll: Number Theoretic Transform

AMD EPYC 9654 Runtime per butterfly [ns]

AMD EPYC 9654

102 s MQX Bl AVX-512 Bl AVX2 i Scalar GMP
400
1 GMP
10 — : —e———e———o———— ¢ OpenfHE _ }
N \4 \4 v \/
-~
"l ‘
vvadd vvsub vvmul axpy Scalar
. g/\\iﬁ
Runtime per element [ns] Intel Xeon 8352Y
B MQX Bl AVX-512 Bl AVX2 Scalar GMP & & _— A — — = —
102 AV X2
AVX-512
101 —— — = — — i — i i — — - |
3 I3.7x
100 i B MQX
vvadd vvsub vvmul axpy 8 10 12 14 16 18 20

NTT size [log2]

Speed-of-Light Analysis
log.

Runtime per butterfly [ns] AMD EPYC Family

ﬁvOpenFHE, 32 Cores

| v A A wr 4
\4

v 4
-~

101
14x
100 1
[
[
~80x
10-1 [
RPU, ASIC [
FPMM, ASIC
[— ,
MoMA, H10Q y e e
1072 ¥——=— MQX-SOL,- 192 Cores
8 10 12 14 16 18 20

NTT size [log2]

MQX ENABLES CPUS TO APPROACH ASIC-LEVEL PERFORMANCE

Code available at github.com/naifeng/benchntt
Reach us at naifengz@cmu.edu

