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Abstract—As computing platforms evolve with heterogeneous
resources, developing optimized code that fully exploits the com-
puting power becomes increasingly challenging. Domain experts
need extensive knowledge of computer architecture, compiler
optimizations, and parallel computing to understand which im-
plementation will work best for their problem domain and data.
Even with considerable time learning, writing, and debugging
high-performance code, such optimizations may not generalize
to different inputs, applications, or computing platforms. To
assist the end-users in optimally deploying workloads on the
heterogeneous environment with high productivity, a fundamen-
tal problem is to automatically find the best “variant” of an
application—the implementation with the optimal configurations
on the most suitable hardware resource resulting in the minimum
runtime. We propose GenMAT, a portable tool for identifying
the best variant of any application specified as a meta-program
with exposed tunable parameters on any hardware. GenMAT
automatically profiles the application by varying the exposed
tunable parameters to generate a small set of profiling data.
Then, GenMAT trains a compact machine learning model that
is used to quickly predict the runtimes of a large number of
possible parameter settings to identify the best variant. We show
that the variant selected by GenMAT has a runtime deviation
within 3.5% of the true best variant in determining the best
linear algebra library for matrix operations. For identifying the
best Halide schedule, GenMAT correctly ranks the runtimes
of thousands of candidates with an average Spearman’s rank
correlation coefficient of 0.95.

Index Terms—automatic performance tuning, heterogeneous
platforms, performance modeling, machine learning

I. INTRODUCTION

The heterogeneity and scale of computing platforms have

grown significantly, yielding an unprecedented amount of

computing power. Nevertheless, to write high-performance

code that fully harnesses the computing power generated

by heterogeneous platforms, domain experts need extensive

high performance computing (HPC) knowledge and spend a

considerable amount of time learning, writing, debugging, and

tuning the high-performance code. Still, challenges remain in

generalizing such optimizations to different inputs, applica-

tions, and computing platforms, rendering trying numerous

configurations inevitable. Not only time-consuming, such trial-

and-error-based optimization is bound to limit optimality of

the code due to limited exploration of all implementation

and optimization choices—which library should be used, how

many threads should be assigned, how to unroll and tile loops,

whether to use a CPU or GPU implementation, etc.

Each of the choices for implementing an application on a

hardware resource may lead to a different object code resulting

in a different runtime. We refer to a particular choice of code

and hardware to implement and run an application as a variant.
We define the variant selection problem as finding the vari-

ant that results in the minimum runtime. With ever-growing

libraries in programming languages, fast-emerging domain-

specific languages (DSLs), and evolving architecture, an ideal

solution to the variant selection problem should be portable,

i.e., (i) it should be able to decide among many arbitrary

implementations of the same application on different hardware

and (ii) it should not be specific to a language or architecture,

so that it can adapt to new technologies, applications, and

algorithms in the future. An additional benefit of such a

solution is the increased productivity—the end-user does not

need to spend time on learning new optimizations nor on

manually tuning the code. Instead, the ideal implementations

will be automatically identified. To simplify the representation

of various implementations, we assume that the application

is presented in the form of a meta-program/script that takes

a set of parameters as arguments. In this context, a meta-

program M(P,X) runs the given program P with parameters

X = {x1, x2, . . . , xn}. Each parameter xi can be considered a

tuning knob, whose value affects the application’s runtime, and

each set of parameter values along with a choice of hardware

generates a variant. We wish to identify a set of parameter

values that results in the lowest runtime among all hardware

resources.

We propose GenMAT, a general-purpose auto-tuner that

identifies the variant that produces the lowest runtime among

all the available hardware/components on heterogeneous plat-

forms. GenMAT automatically (i) profiles the target applica-

tion, (ii) trains a performance prediction model, and (iii) uses

the model to generate the predicted best execution plan that

suggests which hardware on the target platform should be used

and the optimal implementation of the target application on
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that hardware.

GenMAT is not limited to tuning a specific application or

for a specific architecture. While better optimizations may

be obtained by limiting the scope and incorporating domain

knowledge, we trade such optimizations for generalizability

and productivity—the user only needs to specify the tunable

parameters and add few lines of code to change the target

program into a meta-program, as GenMAT simply relies on the

ability to run the meta-program with various sets of parameters

to build a performance model. Furthermore, the user can store

a trained performance model to the built-in knowledge base

and reuse it to select variants of the same application without

profiling again, e.g., running the same application for different

input data.

GenMAT’s default performance prediction model is a com-

pact neural network. The modular nature of GenMAT allows

for easily replacing the neural network with a different ma-

chine learning (ML) model, which enables the community to

improve GenMAT as better performance prediction algorithms

are discovered. Benefiting from the black-box nature of the

ML approach, GenMAT can be used for applications running

on individual hardware, large systems, and even “partitions”

(e.g., a CPU and GPU combination) that are specialized for a

workload.

Our key contributions are:

• We propose GenMAT, a portable ML-based auto-tuner

that is agnostic to any programming language or hard-

ware. The user only needs to specify the tunable param-

eters and add as low as three lines of code to the target

program to start GenMAT, which automatically identifies

the best-performing variant—the best implementation on

the most suitable hardware resource—on the target plat-

form.

• We implement GenMAT in a modular fashion, which

allows developers to easily modify it, for example, to

improve the performance prediction model or accelerate

profiling.

• We demonstrate that the variant selected by GenMAT

has a runtime deviation within 3.5% of the true optimal

variant for deciding the linear algebra library for a given

matrix operation. GenMAT correctly ranks the runtimes

of thousands of Halide schedules (variants) with an

average Spearman’s rank correlation coefficient of 0.95.

• We demonstrate that GenMAT can process more than

5000 candidates to identify the best variant in 1ms,

thereby allowing GenMAT to make decisions at both

compile-time and runtime.

II. RELATED WORK

Prior work on performance optimization/tuning is mostly

empirical [1], [2], designing algorithms [3], [4] or developing

ML-based systems [5]–[10] to find an optimal implementation

of programs that produces the lowest runtime on specific

architecture or using specific programming languages. Fastest

Fourier Transform in the West (FFTW) [1] and Automatically

Tuned Linear Algebra Software (ATLAS) [2] use empiri-

cal search for optimization on fast Fourier transform (FFT)

and basic matrix operations, respectively. Steiner et al. [3]

introduce a value function-based algorithm for performance

optimization and another algorithm to train the value function

estimate. However, they do not specify the training time of

the value function estimate, and therefore there is no evidence

showing that it can generalize to a new program in a short

amount of time as GenMAT does. Decima [7], a general-

purpose scheduling framework for computationally intensive

tasks with pipelines, utilizes reinforcement learning (RL)

techniques to learn from the actual computation environment,

and the RL agent can adapt to different workloads. Decima

uses performance prediction neural networks that consist of

12,736 parameters, which is approximately 170× larger than

GenMAT’s default predictor. Hayashi et al. [9] use supervised

ML techniques to construct performance heuristics that select

a preferable hardware device from CPUs and GPUs. However,

this approach is limited to Java 8 parallel stream APIs.

DSLs such as Halide [11] make it easier to express cer-

tain optimizations through a “schedule” that determines the

execution plan with a set of parameters. However, finding

these parameters is still an open problem as there is no

fixed set of parameters, let alone a fixed set of parameter

values, that optimizes all programs. Halide autoschedulers

[5], [6] work specifically for Halide kernels by automatically

generating a schedule shape and choosing the scheduling

parameters. The ML predictor used by GenMAT outperforms

the autoscheduler of Mullapudi et al. [5] with a 1.7x speedup

on the Blur kernel [12]. Darkroom [4] is a compiler and DSL

for high-performance image processing. The core algorithm of

Darkroom solves an integer linear program to generate ASIC

design, FPGA code, or CPU code, given the user’s high-level

code. OpenTuner [10] is a framework for building domain-

specific program auto-tuners, using ensembles of disparate

search techniques to find an optimal solution. SPIRAL [13]

is an autotuning system that uses a unifying mathematical

formalism named operator language to capture computational

kernels and then solves an optimization problem to find the

best candidate program for the given platform and computa-

tional kernel.

Our Focus: Unlike existing work, we create a lightweight,

portable auto-tuner that is not restricted to any programming

language or architecture. As long as the user can run the to-be-
tuned program from the command line, GenMAT is applicable.

Instead of learning a new auto-tuning system or language,

the user only needs to specify the tunable parameters and

add as low as three lines of code to the target program to

start GenMAT. Moreover, extremely lightweight design and

profiling accelerating techniques allow GenMAT to be used at

both compile-time and runtime.

While we present our design for general programs, we envi-

sion that GenMAT can be leveraged to tune large workloads,

frameworks, and systems. A workload can be assumed to

consist of a collection of tasks, where each task is an operation

that has a significant contribution to the runtime. Since a small

2
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Fig. 1: Overview of GenMAT modules and their interactions.

number of pre-defined tasks (such as matrix operations) can

cover a large number of workloads [14], GenMAT should be

able to utilize known libraries implementing those tasks for

variant selection instead of relying on the user to provide var-

ious implementations to choose from. Given our motivation,

we demonstrate the effectiveness of GenMAT on programs

that are dominant tasks in many workloads, such as matrix

multiplication, convolution, pooling, and FFT.

III. DESIGN

As shown in Fig. 1, GenMAT has a modular design where

each module can be separately customized in the future for

improvement. The inputs to GenMAT are one or more meta-

programs (see Section III-A) and a configuration text file (see

Section III-B). One meta-program corresponds to one decision

(e.g., which hardware to use) described in Section III-B1.

GenMAT repeats the following procedures for each meta-

program specified in the configuration file.

1) GenMAT checks if the meta-program has been profiled

before by consulting the knowledge base.

• If no, the Profiling Parameter Set Generator module

will be used to generate a collection of parameter sets

(see Section III-B2a) with specific parameter values for

training the performance prediction model. Then, the

Profiler module runs the meta-program with each set

of parameter values to generate training data. This data

is passed to the Model Trainer module, which trains

a performance model, loads it into the Performance

Predictor module, and stores it into the knowledge

base.

• If yes, the previously-trained performance prediction

model will be retrieved from the knowledge base and

loaded into the Performance Predictor module.

2) The Candidate Parameter Set Generator module generates

a collection of partial parameter sets with specific values

(see Section III-E).

3) GenMAT provides an interface for the user to query for

the best variant for any input size (see Section III-G).

4) Each candidate (i.e., the queried input size combined with

each pre-generated partial set of values) is evaluated by

the Performance Predictor module to obtain a predicted

runtime.

5) GenMAT ranks all the candidates using the predicted

runtime and selects the set of parameter values that is

predicted to result in the lowest runtime for the meta-

program.

After repeating the process for all meta-programs, for the

queried input size, GenMAT compares the predicted minimum

runtime of each meta-program and selects the meta-program

that produces the lowest runtime—the best variant. The final

output is a decision followed by a set of values for the tunable

knobs, which represents the best implementation on the most

suitable hardware resource.

A. Program to Meta-Program

To change a program into a meta-program, the user needs

to modify the original code to

• specify the tunable parameters

• read the command line arguments and assign them to

tunable parameters accordingly

• (Optional) enforce constraints on parameters

For some meta-programs, there are certain constraints on the

parameters for the meta-program to be successfully executed.

In Halide, for example, the inner vectorization width cannot

exceed the outer tile size. GenMAT is designed in a way that

the user has the choice of enforcing the constraints or not.

If the user chooses not to enforce the constraints, whenever

GenMAT runs into an error during profiling, it will skip to the

next set of parameter values. Therefore, the user can decide

whether to spend time learning interactions among parameters

before starting GenMAT or to tolerate the cost of trial-and-

errors (which depends on when the error will be thrown)

during profiling.

The Appendix shows the code of the original Blur kernel

written in Halide and the code of the same Blur kernel in

the form of a meta-program. The user only needs to change

3
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input metadata and numeric parameters (described in Section

III-B2a) in the original program to tuning[i] and add three

lines of code (line 4 to line 6 in Listing 7) if not enforcing

the constraints. The user can extend those three lines of code

to enforce the constraints among parameters.

1 decision=cpu gpu1 gpu2
2 input-metadata=2048 2048 2048
3 numeric=1024 32
4 functional=1*2*3
5 path=mm.cpp
6 compile-cmd=g++ -g -fopenmp mm.cpp -o mm_cpu
7 run-cmd=./mm_cpu
8 reuse-model=n
9 input-metadata=8192 8192 8192

10 numeric=1024 1024 1024 1024
11 functional=1*2*3
12 path=mm.cu
13 compile-cmd=nvcc mm.cu -o mm_gpu
14 run-cmd=CUDA_VISIBLE_DEVICES=0 ./mm_gpu
15 reuse-model=n
16 input-metadata=8192 8192 8192
17 numeric=1024 1024 1024 1024
18 functional=1*2*3
19 path=mm.cu
20 compile-cmd=nvcc mm.cu -o mm_gpu
21 run-cmd=CUDA_VISIBLE_DEVICES=1 ./mm_gpu
22 reuse-model=n

Listing 1: Example of the configuration file for matrix multi-

plication.

B. Configuration File

The configuration file for GenMAT consists of one line

of decisions (see Section III-B1) and one or more execution

blocks (see Section III-B2), where each block corresponds to

one decision in order. Listing 1 is an example of a configura-

tion file where the target application is matrix multiplication.

1) Decisions: Each decision is a nominal choice that cor-

responds to the execution block in order. That is, GenMAT

only needs to know that the ith decision-string corresponds to

the ith execution block instead of the meaning of each string.

Examples of decisions are choices among different hardware

resources or whether to use a compilation flag or not.

1 decision=cpu gpu1 gpu2

Listing 2: Example of decisions in the configuration file.

2) Execution Blocks: The execution block specifies how to

run the meta-program with tunable parameters. In Listing 1,

the first execution block (line 2 to line 8) corresponds to cpu,

the second (line 9 to line 15) corresponds to gpu1, and the

third (line 16 to line 22) corresponds to gpu2. Each execution

block consists of two parts: parameter sets and execution

commands. In the following, we use the first execution block

as an example for illustration.

a) Parameter Sets: The user needs to specify the follow-

ing parameters:

• input-metadata parameters determine metadata on in-

puts that the program takes. We assume that the given

program has an input generator function that generates

an input based on the provided metadata. Using matrix

multiplication as an example, we assume that there is a

function that takes in matrix dimensions (input metadata)

and outputs a matrix (input data) that will be used for

matrix multiplication. We refer to a set of input metadata

values as an input size.

• numeric parameters are the tuning knobs whose value

affects the application’s runtime. For example, the tile

size to be used for a matrix operation. For one input

size, GenMAT will predict the set of numeric values that

results in the lowest runtime.

• functional parameter (Optional) denotes an additional

input that can assist with performance modeling, such

as the estimated complexity of the program (see Section

III-D). Unlike other parameters, functional parameter is

not passed as an argument to the meta-program for

profiling but passed to the Performance Predictor module.

2 input-metadata=2048 2048 2048
3 numeric=1024 32
4 functional=1*2*3

Listing 3: Example of parameter sets for matrix multiplication

on CPU.

Each value specified for input metadata or numeric pa-

rameter is the inclusive upper bound for that parameter. The

default inclusive lower bound for each parameter is 2. For

example, the ranges of the numeric parameters to be tuned

in Listing 3 are [2, 1024] and [2, 32], respectively. GenMAT

calculates a suitable base to perform logarithmic sampling

for the numeric parameters so that the total number of sets

generated approximately matches the desired number specified

by the user. By default, the number of profiling parameter sets

is 250, and the number of candidate parameter sets is 5000.

For instance, under the specification of Listing 3, the

following line can be executed as a variant:

./mm_cpu 1024 1024 128 16 4

which means executing the meta-program mm cpu for two

matrices of size 1024 × 1024 and 1024 × 128 with tile

size 16 using 4 threads. The functional parameter in this

example suggests that the product of the first, second, and

third argument should be treated as an additional input for

performance modeling.

b) Execution Commands: The execution commands con-

sist of:

• path: relative path of the meta-program with respect to

the configuration file.

• compile-cmd: command to compile the original program.

• run-cmd: command to run the original program.

• reuse-model: if GenMAT detects that there exists a pre-

trained model for the meta-program,

– y means to use the pre-trained model and therefore skip

profiling and training.
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– n means to profile and train a new model.

Since the user only adds file I/O code to the original program,

the commands to compile and run the original program will

be able to compile and run the meta-program.

5 path=mm.cpp
6 compile-cmd=g++ -g -fopenmp mm.cpp -o mm_cpu
7 run-cmd=./mm_cpu
8 reuse-model=n

Listing 4: Example of execution commands for matrix multi-

plication on CPU.

GenMAT is started using a bash command:

bash genmat.sh

C. Profiling for Training

Given the ranges of tunable parameters (i.e., input metadata

and numeric parameters), GenMAT profiles the meta-program

by running it with various randomly sampled sets of values.

For certain types of programs, GenMAT can automatically

identify tunable parameters and constraints on them to gen-

erate random parameter values. For example, in Halide pro-

grams, the “scheduling parameters” are considered as numeric

parameters, and GenMAT can identify them along with the

constraints by scanning for Halide scheduling keywords such

as .tile and .vectorize.

GenMAT also accelerates profiling by

• running the meta-program on small inputs so that the

runtime to obtain one training data instance during pro-

filing is low. We have shown that our default performance

model can be trained on small inputs and yet generalize

well to large inputs (see Section IV-B3b).

• using a compact neural network for performance mod-

eling, due to which the training time is in the order of

seconds.

D. Performance Modeling

For each application on arbitrary hardware with arbitrary

implementation, GenMAT trains a performance model using

the profiled data. The model will be used for performance

prediction to select the best variant. By default, GenMAT uti-

lizes the lightweight performance prediction model proposed

by Srivastava et al., Augmented Neural Network (NN+C) [12].

The key innovation of NN+C is “augmenting” a mathematical

function, which captures the complexity of the application on

the target hardware, as an input feature to increase predic-

tion accuracy. In GenMAT, the augmentation is enabled by

the functional parameter. Note that specifying the functional

parameter is optional, and if it is not provided, GenMAT will

run NN+C without the augmentation.

The lightweight design of NN+C—two hidden layers which

result in less than 75 parameters—allows extremely fast train-

ing and inference that enables GenMAT to make decisions

during compile-time as well as runtime. We make NN+C

default in GenMAT as it has been shown to outperform

traditional feed-forward neural networks for performance pre-

diction on 48 implementation-hardware combinations [12].

GenMAT allows for replacing NN+C with any other neural

network as a TensorFlow model [15].

E. Variant Selection

GenMAT generates thousands of candidate parameter values

by randomly varying numeric parameters for any given input

size. Note that the Profiling Parameter Set Generator generates

data points by varying all tunable parameters (i.e., input

metadata and numeric parameters), whereas the Candidate

Parameter Set Generator generates partial candidates first by

varying numeric parameters. When the user queries for the

best variant for an input size (see Section III-G), complete

candidates will be formed by combining candidate numeric

values with the given input size. Then, GenMAT uses the Per-

formance Predictor module to evaluate each of the candidates,

ranks them according to their predicted runtime, and selects

the variant that is predicted to produce the least runtime.

Therefore, GenMAT can identify the fastest variant without

actually running the meta-program with each of the candidates.

F. Model Reusability

GenMAT comes with a built-in lightweight knowledge

base. When GenMAT encounters a meta-program, profiles

it, and trains a performance model, it saves the model in

the knowledge base with an ID associated with the hash of

the meta-program file. When GenMAT is used again for the

same meta-program, it can reuse the previously trained model

directly, without profiling and training. For instance, if the user

wants to obtain the best variant for a different input size, the

previously trained model is reusable. If GenMAT is integrated

with a compiler, storing the model in the knowledge base also

allows the compiler to consult it if needed at other stages of

compilation and execution. GenMAT can output multiple top

candidate variants, and the compiler can decide which one to

use during execution for global optimization. GenMAT allows

for integrating an external knowledge base to replace the built-

in one. We have shown that the knowledge base proposed by

Zhou et al. [14] can be integrated into GenMAT.

G. User Interface

In the end, GenMAT provides a user interface for querying

for the best variant for any input size within or out of the

range specified in the configuration file. In Section IV-B3b,

we have shown that our performance models can generalize

well to unforeseen input sizes. Thus, the user can query for

out-of-range input sizes but may obtain sub-optimal results.

As shown in Listing 5, for each query (line 1 and line 4),

GenMAT outputs the decision and a set of numeric parameter

values. By default, if there are ten or fewer possible input

sizes within the range, GenMAT will automatically query for

all possible input sizes and output the results. Then, GenMAT

will start the interface for the user to query for other input

sizes.

5
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1 >1024 1024 128
2 decision: cpu
3 numeric: 256 16
4 >4096 4096 4096
5 decision: gpu1
6 numeric: 8 256 256 128

Listing 5: Example of the user interface.

GenMAT’s source code, including a thorough code walk-

through, is available on our public repository1.

IV. EVALUATION

A. Experimental Setup

We conducted our experiments on five platforms: Intel(R)

Xeon(R) CPU E5-2650 v2 @ 2.60GHz (Xeon), with 32 cores,

64 threads; Intel(R) Core i7-8750H CPU @ 2.20GHz (I7),

with 12 cores, 24 threads; Intel(R) Core i5-7360U CPU @

2.30GHz (I5), with 2 cores, 4 threads; NVIDIA Tesla K40c

(Tesla) and NVIDIA Quadro K420 (Quadro). To perform

matrix operations on CPU, we use Eigen/Dense and Eigen/S-

parse from the Eigen library [16], and uBLAS/matrix and

uBLAS/matrix sparse from the Boost library [17] in C++. On

GPU, we use global memory and shared memory in CUDA to

optimize matrix operations. To perform Gaussian Blur (Blur)

and fast Fourier transform (FFT), we use Halide.

Our experiments are designed to evaluate the following of

GenMAT: (i) capability to decide the best library to implement

an application, (ii) capability to identify the best tuning for

numeric parameters, and (iii) overall processing time.

B. Results

1) Choosing the Best Library: We evaluate GenMAT on

choosing the best library (variant) for matrix-matrix multipli-

cation, max-pooling, and matrix convolution on each of the

aforementioned platforms. Except for matrix convolution on

Tesla and Quadro, other program-hardware combinations have

a single best variant choice for all input sizes. For example,

using the Boost library leads to a better performance than

using the Eigen library for max-pooling for all input sizes

on all CPUs we conducted experiments on. Therefore, we

only discuss the results of matrix convolution on Tesla and

Quadro, where choosing between shared and global memory

implementation of CUDA is not clear.

To evaluate GenMAT’s performance in choosing the best

library, we measure the average (over all input sizes) percent-

age runtime deviation, i.e., how close is the runtime of the

selected variant compared to the true best variant:

avg

(
Tselected − Tbest

Tbest

)
× 100%

where for each input size, Tselected is the runtime of the

selected variant and Tbest is the runtime of the true best

variant. To obtain Tbest for each input size, we exhaustively

1https://github.com/Naifeng/Auto-Tuner

run and measure the runtime of all the variants generated by

the Candidate Parameter Set Generator.

As shown in Table I, the GenMAT-selected variant has an

average percentage runtime deviation of 3.9% and 3.5% from

the true optimal choices on Tesla and Quadro, respectively.

This indicates that the selected variant (if not the best variant)

has a runtime significantly closer to the optimal one compared

to the baselines that always pick global memory or always pick

shared memory.

TABLE I: Comparison of average percentage runtime devia-

tions for matrix convolution on Tesla and Quadro.

Tesla Quadro
GenMAT 3.9% 3.5%

CUDAGlobal Memory 9.4% 9.5%
CUDAShared Memory 7.8% 7.4%

2) Determining Halide Schedules: We evaluate GenMAT

on determining Halide schedules for Halide Blur and FFT

kernels. A Halide schedule is a set of values for vectorization

width, tile size, etc., which directly affects the runtime of

the Halide kernel. While in Section IV-B1, GenMAT chooses

between two or three libraries, GenMAT needs to select the

best schedule from thousands of candidate Halide schedules.

We use Spearman’s rank correlation coefficient (ρ) to

evaluate GenMAT’s capability to rank candidates. Let the

predicted runtimes be {t̂1, t̂1, . . . , t̂N} and the ground truth

be {t1, t2, . . . , tN}. Let di = | rank(ti) − rank(t̂i)|, where

rank(ti) is the rank of ti among {t1, t2, . . . , tN} and rank(t̂i)
is the rank of t̂i among {t̂1, t̂1, . . . , t̂N}, ranking from the

lowest value to the highest value. Spearman’s rank correlation

coefficient is defined as

ρ = 1− 6
∑N

i=1 d
2
i

N (N2 − 1)

ρ ranges from −1 to 1. ρ of 1 indicates a perfect positive

correlation of prediction’s ranks and truth’s ranks, whereas ρ
of −1 indicates a perfect negative correlation. ρ of 0 indicates

there is no correlation between the ranks.

As shown in Table II, GenMAT obtains an average ρ of

0.94 for Halide Blur and an average ρ of 0.96 for Halide

FFT. The high value of ρ indicates that the GenMAT predictor

correctly ranks most of the variants with respect to their

runtime. Therefore, the Halide schedule chosen by GenMAT—

one that is ranked first—is likely to be the true best schedule

or at least results in a runtime that is close to the minimum

runtime.

TABLE II: Spearman’s rank correlation coefficients for Halide

Blur and Halide FFT on CPUs and GPUs.

Halide Blur Halide FFT
CPU GPU CPU

Xeon I7 I5 Tesla Quadro Xeon I7 I5
0.87 0.91 0.96 0.99 0.95 0.99 0.95 0.95
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TABLE III: Effects of accelerated profiling for Halide Blur on Xeon and I5.

Xeon I5
Acceleration No Yes No Yes

Profiling inputs (n× n), n ∈ A (m×m),m ∈ B (n× n), n ∈ A (m×m),m ∈ B
Variant Selection inputs (n× n), n ∈ A (l × k), l, k ∈ [214, 215] (n× n), n ∈ A (l × k), l, k ∈ [214, 215]

Profiling Time 3318s 257s 406s 40s
Spearman’s Coefficient 0.91 0.86 0.97 0.78

Runtime deviation 18% 5% 6% 7%
A = {210, 211, 212, 213, 214, 215}, B = A \ {214, 215}.

3) Overall Processing Time:
a) Selecting Variant: For matrix operations and Halide

kernels, GenMAT can inference on 5000 candidate variants

to select the best variant in 0.75 milliseconds, resulting in

0.15 microseconds per candidate. The minute processing time

allows GenMAT to explore a large parameter space in time-

constrained settings, thereby making GenMAT useful at both

compile-time and runtime.
b) Accelerated Profiling: To demonstrate the accelerated

profiling, we present the results of tuning the Halide Blur

kernel, which operates on an input image. We evaluate if the

performance model training on instances with input sizes from

210 to 213 can accurately predict on instances with input sizes

from 214 to 215. Since smaller inputs are executed quickly, it

significantly shortens profiling time. Furthermore, the profiling

step only uses square images as inputs, while the tuning is

performed on rectangular images. We generated 250 instances

for profiling and 750 candidates for variant selection. More

candidates could be generated, but we restricted to a small

number of candidates as we had to execute each of them to

obtain the ground truth for evaluation.
As shown in Table III, the accelerated profiling significantly

reduces profiling time (12.9× for Xeon and 10.2× for I5)

while maintaining a satisfactory ρ (0.86 for Xeon and 0.78 for

I5). It is noteworthy that the runtime deviation increases by

only 1% for I5 and even decreases by 13% for Xeon, indicating

that profiling on small regular inputs can generalize well to

large relatively-irregular inputs.
Eventually, the user needs to make the decision of whether

to trade performance prediction accuracy for a shorter profiling

time. Accelerated profiling is necessary when profiling a

program with large inputs is infeasible—for example, when

the user can only allocate limited node-hours on a shared

computational resource.

V. LIMITATIONS AND FUTURE WORK

Minimal Re-Profiling: When using GenMAT, we assume

that the target program’s runtime environment during exe-

cution remains the same as the runtime environment during

profiling. For example, if profiling is performed on exclusive

use of the platform, then we assume that there will be

no other co-scheduled programs during execution. Thus, if

the runtime environment changes, we encourage the user to

run GenMAT to profile again for accurate tuning. Benefiting

from the lightweightness of the default performance prediction

model and techniques to accelerate profiling, GenMAT can re-

profile and re-train the predictor in a short amount of time. We

envision that in the future, GenMAT can exploit the changes of

the runtime environment so that little or no re-profiling needs

to be performed.

Explainable Machine Learning: Our default predictor—

NN+C—is a black-box approach that takes in data points and

outputs predictions. Benefiting from this property, GenMAT

can make predictions by only manipulating the inputs to

the target program to profile, without knowing the specific

architecture or the implementation itself. However, the black-

box treatment of the programs makes it difficult to interpret

the prediction results. For example, it is hard to analyze

why the average percentage runtime deviation is high on one

architecture and low on another. We aim to make the default

predictor explainable.

Scaling: While we present our design for general programs,

we envision that GenMAT can be leveraged to tune large work-

loads, frameworks, and systems. Because a small number of

pre-defined tasks (e.g., matrix operations) cover a wide range

of large workloads, GenMAT should be able to automatically

extract pre-defined tasks and utilize known libraries imple-

menting those tasks for variant selection instead of relying on

the user to provide various implementations to choose from.

Besides tuning multiple pre-defined tasks of a large workload,

we will also apply GenMAT on systems where there are

hundreds or thousands of configuration knobs that control the

system, such as database management systems (DBMS) [18]

and large-scale atomic/molecular massively parallel simulator

(LAMMPS) [19].

VI. CONCLUSION

We have introduced GenMAT for automatic performance

tuning of programs which are presented as meta-programs with

exposed tunable parameters. The user only needs to specify the

tunable parameters and add as low as three lines of code to

start GenMAT, which accelerates profiling, accurately predicts

performance, and selects the variant that produces a runtime

close to the runtime of the true optimal choice. The fast

processing time allows GenMAT to work at both compile-time

and runtime. We implemented GenMAT in a modular fashion

and open-sourced it to encourage further development.
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APPENDIX

1 #include "Halide.h"
2 using namespace Halide;
3 int main(int argc, char **argv) {
4 Func blur_x, blur_y;
5 Var x, y, xi, yi;
6 Func input;
7 input(x,y) = x + y;
8 blur_x(x, y) = (input(x-1, y) + input(x, y) + input(x+1, y))/3;
9 blur_y(x, y) = (blur_x(x, y-1) + blur_x(x, y) + blur_x(x, y+1))/3;

10 blur_y.tile(x, y, xi, yi, 256, 32).vectorize(xi, 8).parallel(y);
11 blur_x.compute_at(blur_y, x).vectorize(x, 8);
12 blur_y.realize(1024, 1024);
13 printf("Success!\n");
14 return 0;
15 }

Listing 6: Blur kernel written in Halide [20].

1 #include "Halide.h"
2 using namespace Halide;
3 int main(int argc, char **argv) {
4 std::vector<int> tuning(argc);
5 for (int i = 0; i < argc; ++i)
6 tuning[i] = atoi(argv[i]);
7 Func blur_x, blur_y;
8 Var x, y, xi, yi;
9 Func input;

10 input(x,y) = x + y;
11 blur_x(x, y) = (input(x-1, y) + input(x, y) + input(x+1, y))/3;
12 blur_y(x, y) = (blur_x(x, y-1) + blur_x(x, y) + blur_x(x, y+1))/3;
13 blur_y.tile(x, y, xi, yi, tuning[2], tuning[3]).vectorize(xi, tuning[4]).parallel(y);
14 blur_x.compute_at(blur_y, x).vectorize(x, tuning[5]);
15 blur_y.realize(tuning[1], tuning[1]);
16 printf("Success!\n");
17 return 0;
18 }

Listing 7: Blur kernel in the form of a meta-program.
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